青海省2014—2023年细菌性痢疾流行特征及预测模型初探
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R181.3+2

基金项目:

“昆仑英才·高原名医”项目(青卫健办[2021]104号)省市级;2024年度公共卫生人才培养支持项目


Epidemiological characteristics and prediction model of bacillary dysentery in Qinghai Province, 2014-2023
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 文章评论
    摘要:

    目的 比较五种时间序列模型,预测2024年青海省细菌性痢疾月发病率,为防控提供参考依据。方法 分析2014—2023年青海省细菌性痢疾流行特征,应用R4.3.1软件建立季节性自回归移动平均(SARIMA)模型、三次指数平滑法(Holt-Winters)模型、指数平滑(ETS)模型、神经网络自回归(NNAR)模型、指数平滑空间状态(TBATS)模型,分析模型拟合效果并比较其准确度。结果 2014—2023年青海省累计报告细菌性痢疾5 833例,无死亡病例,男女性别比为1.23 ∶1。2016年报告发病率最高(15.45/10万),2023年报告发病率最低(3.68/10万),2014—2016年上升,之后下降,总体下降趋势明显。5岁以下年龄组病例数最多,占总数的29.76%(1 736例)。人群分布中构成比居前3位的分别为幼托机构及散居儿童(35.56%)、农民(24.65%)、学生(12.62%)。除Holt-Winters相加模型外,其余四种模型预测趋势均与实际一致;其中拟合效果最好的是ETS模型,整体表现较为均衡(训练集:MAE=0.13、RMSE=0.21、MAPE=19.55%;测试集:MAE=0.11、RMSE=0.16、MAPE=28.66%),建议基于ETS模型对青海省细菌性痢疾发病率进行预测。结论 2014—2023年青海省细菌性痢疾总体呈下降趋势,6—8月为流行高峰,托幼及散居儿童为高危人群。五种预测模型中ETS模型的拟合效果最好,后续可基于ETS模型对细菌性痢疾发病率进行预测。

    Abstract:

    Objective To compare five time series models and predict the monthly incidence of bacillary dysentery in Qinghai Province in 2024, and provide reference for the prevention and control. Methods The epidemic characteristics of bacterial dysentery in Qinghai Province from 2014 to 2023 were analyzed. R4.3.1 software was used for establishing seasonal autoregressive integrated moving average (SARIMA) model, Holt-Winters triple exponential smoothing (Holt Winters) model, exponential smoothing (ETS) model, neural network autoregression (NNAR) model, and trigonometric seasonality, Box-Cox transformation, ARMA errors, trend and seasonal components (TBATS) model. Fitting effect of the models was analyzed and accuracy was compared. Results From 2014 to 2023, a total of 5 833 cases of bacterial dysentery were reported in Qinghai Province, without deaths, male to female ratio being 1.23 ∶1. The highest incidence was reported in 2016 (15.45 per 100 000 people), and the lowest incidence was reported in 2023 (3.68 per 100 000 people). Incidence increased from 2014 to 2016, then decreased, showing an obvious overall downward trend. Case number in < 5 years age group was the highest, accounting for 29.76% of the total cases (n=1 736). Regarding population distribution, the top three were children in childcare institutions and scattered children (35.56%), farmers (24.65%), and students (12.62%). Except the additive Holt-Winters model, the predicted trends of the other four models were consistent with actuality. The ETS model had the best fitting effect, with a relatively balanced overall performance (training set: MAE=0.13, RMSE=0.21, MAPE=19.55%; testing set: MAE=0.11, RMSE=0.16, MAPE=28.66%). It is recommended to predict the incidence of bacillary dysentery in Qinghai Province based on ETS model. Conclusion From 2014 to 2023, bacterial dysentery in Qinghai Province showed a downward trend, with the peak of the epidemic from June to August. Preschool and scattered children were high-risk groups. Among the five prediction models, ETS model has the best fitting effect, and can be used to predict the incidence of bacillary dysentery.

    参考文献
    相似文献
引用本文

姜雨淇,赵金华,龙江,等.青海省2014—2023年细菌性痢疾流行特征及预测模型初探[J]. 中国感染控制杂志,2025,24(10):1389-1394. DOI:10.12138/j. issn.1671-9638.20252077.
JIANG Yuqi, ZHAO Jinhua, LONG Jiang, et al. Epidemiological characteristics and prediction model of bacillary dysentery in Qinghai Province, 2014-2023[J]. Chin J Infect Control, 2025,24(10):1389-1394. DOI:10.12138/j. issn.1671-9638.20252077.

复制
分享
文章指标
  • 摘要阅读次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-29
  • 出版日期: