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Molecular regulatory mechanisms of tuberculous spondylitis
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[Abstract] Objective To identify the potential pathological mechanisms of tuberculous spondylitis (TS). Methods

Spinal specimens were collected from 13 TS patients and 13 controls who received treatment at a hospital from
March 2021 to March 2023. Specimens were randomly selected from 3 TS patients and 3 controls to perform high-
throughput IncRNAs and mRNAs sequencing with Illumina NovaSeq 6000. Differentially expressed IncRNAs
(DELncRs) and mRNAs (DEmRs) in TS specimens were identified and analyzed through differential expression,
and enrichment analysis was performed. The top 20 DEmRs with high connectivity were identified through protein-
protein interaction (PPI) network. Regulatory network of DEIncRs and DEmRs was built. Finally, gene expression
of the remaining specimens was analyzed using qRT-PCR detection. Results A total of 1 243 DEmRs and 262
DEIncRs were identified. Enrichment analysis revealed that muscle contraction, muscle system processes, muscle
structural development, PI3K Akt signaling pathway, calcium signaling pathway, and cAMP signaling pathway
were activated in TS, while responses to cytokines, cytokine-mediated signaling pathways, regulation of immune
system processes, cytokine-cytokine receptor interactions, human T-cell leukemia virus type 1 infection, and phago-

somes were inhibited in TS. Three sub-networks were identified in PPI, among which MYL1, TTN,
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LOC102723407, HLA-A, interleukin (IL)-6, and IL-18 had the highest connectivity and were identified as key
DEmRs. MYL1, TTN, and IL.-6 were regulated by DEIncRs. qRT-PCR validated the differential expression of key

DEmRs in TS. Conclusion DEmRs are regulated by IncRNAs and participate in the pathological process of TS, and

the immune responses are inhibited in diseases condition. This study reveals key molecules and signaling pathways

in TS, providing new insights into the pathological mechanisms of TS, and suggest scientific basis for developing

new therapeutic targets.
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Table 1 Primer sequences for qRT-PCR
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Figure 1

Differentially expressed genes of TS and control patients
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Figure 2 Enrichment analysis of DEmRs function in TS
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Figure 4 qRT-PCR detection of key gene expression levels of specimens in TS and control groups
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