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Mosquito-borne virus infection and transmission cycle

ZHANG Liming » LI Juzhen, ZHU Yibin, CHENG Gong (School of Basic Medical Sciences ,
Tsinghua University , Beijing 100084, China)

[Abstract] Mosquito-borne viruses, a class of pathogens primarily transmitted by mosquitoes, present severe glo-
bal epidemics and pose serious threats to human health. These viruses rely on specific mosquito species for transmi-
ssion, and their clinical manifestations vary from mild symptoms to severe complications. Most viruses lack effective
treatment agents and vaccines. This review systematically describes the mechanisms of the mosquito-borne virus in-
fection transmission, encompassing two key stages: host infection and mosquito infection. During the host infection
stage, saliva components of mosquito promote viral invasion and systemic spread within the host by disrupting host
hemostasis process, directly interacting with the virus, altering host cell function, and regulating local immune re-

sponse, ultimately targeting specific organs and causing disease. During the mosquito infection stage, the targeting
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of mosquito is regulated by metabolites from host”s skin microbiome. Host blood components and mosquito’s gut

microbiome exert bidirectional regulation in the infection in mosquito’s midgut. The viruses break through the mid-

gut barrier to enter the hemolymph and further infect the salivary glands. These mechanisms reveal the viruses’

adaptive strategies within the host-mosquito ecosystem and emphasize the importance of multifactorial regulation.

Future research should focus on molecular interventions, microbial applications, and integrated prevention and con-

trol strategies to reduce the risk of mosquito-borne viral transmission.
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Figure 1 Schematic diagram of mosquito-borne virus trans-

mission and acquisition
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KA S BEAIL R L T BB A2 454 T HI 55 Hh i B B RE
1 T AR #E 9 B S . e A . ZIKV 5y NS1 8 3 Af
AR R S O R, [ RELJEV i NST 7R
FERARIEA PRI o HAT S L L I e Th E

M FAH ARG 77 R R v 2 2 T B2 (gamma-
aminobutyric acid, GABA) 21 ¥E% 25 B YL 10 5 —
SCHER U, WO I S L R R T A R
Yo LR (G IR 5 &8 @R R
R A6 B R 26 I GABA L, GABA J 5 8% i ot f
N GABA BE R 4. 1 il 42 9% B fa (immune defi-
ciency, IMD) {5 5 il # 19 1% 1. IMD i #% 2 i i
T i A S 2% I T R AR A O SR B BT
FOWE AL AT 55 2 R e B K Cln K 2 2% B A RO Kt
ARSI R 2R ok . 24 IMD il #8 GABA )1 i i)
A e fi B 0006 1 R BE D BRAIG L DT 12 i 22 Al
9 7 1Y R g, A 45 5 7 R 1 DENV AL JEV H
W75 JE I SINV L)L K A JE W0 75 J& 19 55 7 99 9% 75

55 BRI, GABA X 1 J8&
G At E 1 AT R S i 45 TMD Jd i S B

N2 & A 1m0 7N RNA (microRNA, miR-
NADA] 2 55 98 45t Ao WO o 100 gk e 5k #27
Hrp hsa-miR-150-5p fE i A I K & 4R 19 miR-
NA 7 0 U B B ILAE 18 3 /Y 148 /5 REE A IR
RN FFREFAE . 1% miRNA o B BRI A Ar-
gonaute-1(Ago D) # F A 7 1 RNA THLHLHI 47 5+
PR ol e e FL AR IR 2ROk . JBEBEFL AR B2
— B A BT BE S PR 22 E R A A a] A AR
TR A 30 DENV ., ZIKV %5 Iz 555 75 i 2
il . hsa-miR-150-5p X g ¢ FL 8 [ i 22 35 19 410 1) m]
Ree AR It v Ji B0 6 57 5 B 5 DT 42 22 50 3505 5 1)
S 51 % .

WA A 2 LT 2 7K P R i S 7 1Y JE
YR, W R F IR N R 7 B ) DENV Jg&
P J5 358 KUK N B DENVJE P 20 $5 D1 454
i, HLEE - DENV 4 35 [ (envelope protein, E 2§
P B ASE HE IR ) 5000 R ZH SR i) 4 d . 32755 7 4 B T RE A
it DENV fEs Uik g 19 52 ] 5 4 8k . @i RNA
PEAR DB IR K iy AKT 5 TOR A f5 . H Ak
P DENV i 2 i B2 B A%, £ W] AKT F1 TOR {5 5 i
FEFTRES S M AN 3 0 B A T S AL AR R
3.2.2 WHREERAENE DAL 18 EME
AT 10 ) s T AU R A R i Ak A
T4 I A R i R AU A 58 BT R A L R R
Y e A ML i o LT R A M e 40 i R o T 0
i AR S i T Y 5L B ROS BLER . ROS Jd
1o 5T S A I O T R TE R b R AR Y A
X BN L fE TR R R A AT B O T g
95 5 R RO L B DENV 25 I 00 75 10 1446 .

% %% & 1§ 45 B (low-density lipoprotein, LDL)
SR 2 I VB v A o I B Y O B Y 7Y, LDL
VB N 1R 322 i 2 A s e W if 3 o 3l g
A EARH S AR T 1 N A iR AR B bR A0 i B
IBU, 70 40 s 1 RR SR . 32 R T R R R
R AR AN AR T, AL Al RE 9 Ko # UKL 5 LDL
T A A AR OB TR DT T e 9 9 X 240 L 1
E5RA . B LI DENV 83y ml FAR 1E 3 1M i
LDL % & . R A 5 2o o 0] MR & vk B LDL Iff 48
FIFRAR ZIKV 7R 8 i i) B 2800 5 1R b il 3 2%
B, LDL i kb 2 ] #)1 fi] DENV il ZIK'V X 55 440
MG . MHZ T, | % R E B S s & AR
SR IR SR R LDL P m #7E F B A 4%

(Tahyna virus) ,
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SV S T RE AR 5 e Y R SRR AR

BEAR i 32 100V A R G0 8 T B s I
YL, BFEEUY R B, & DENV R K36 A MG 1
122 ) MR e S L o i DENV 5 87 405 8 T
RO ML 4L, HAMARE 8 B 5 AaMCR %3k |
PA L $E R A RMAE 4 AT REBR ] DENV J& Yy . Bk G
P W BFF B (ELISA) | A 28 2 6 Fl BT % 43 A s » A
A5 Coa A 55 35 K A 20 it 1Y) 22 F 2 L 45 4
4% G & B 2 & (AAEL006844) 1 5 15 & 1
R R CAAEL003776) , 3% 2225 7R, C5a W] i
15 I R R S A AR 2 s R R
S T DENV A4 528 1 24
3.3 i ey R eAEE A BOR PR
BE R Ge ) EBEERA, HE A e A R Y S
PE R G5 I B URL B TP i SO 85 1 A B AR D %o
JERYL o B R A O I R T AR Y XS A W A
5 2 BT A b 2 | A 25 PR A0 0 IR A5 A N R
S LR PR P B f 2 3 i 2 Ak ) B i R
FACH = Ve F S 2 s i SR A BB ) I B B R
3.3.1 R#tBERLEWBEMEY BHERLEY
IR firk S EL v g 0 LR IR L S W G0 B B AR DD RE
RV B A (Serratia marcescens) i&— M E M T8
T AP ORI 1 BB I i 1 e A TR AT A A R E R
R fift v i 0y L5 s (2 a0 22 b I o A R0 L 1
B 43 W 1 SmEnhancin & — 4 J& 8 1 . 7T K fig
We b g bR MR R A SR E . FEO R
w7 R R 2 Y S B S AT BH LR 7 URL 2 ik b Bz
/M. SmEnhancin % 5 & ()5, B 002 58 B HERE
I 55 5 B 1R A TP b e A0 L B8 e EE IR RO

JI7 T A A T AU s e g SRy S 9% N L AR
PE b A Y, R WY W (Serratia odori-
fera) Jt—Fh A L T BE Y H g 6 A TR L o] 498 58 0 7
X ICR R AR YT IR AW P40 AT S
B K AR b i b Rz 240 M 2 T porin 2R 145 A 1
il IMD % {5 5 38 % 3005 . IMD 3l 4 1 5, =
IR RN N PN N K DI S v N
DENV 75 1 figg i) 52 1l 38 Jin » 42 #F 955 75 4 b &% 40 g
L. IAh, SRV WX CHIKV g 2 {2
HEAE . BT R, R T R % skt
CHIKV {8 e g 1 o, $/8 HAE R B #H b 2
BRI

Jign TECACAE A T R v g R 5 T s
TR W i T 3R AP BT A 1 Talaromyces &
FL A AT 3 R T T A PR 2 DENV YL 9%

LT T 3 A 4 P A 0 o e bl SR R
PE . TR 1T et T A i S AR A G B [ I
W B 7 A8 » AT 3d a6 Ak 2 G I A 1 0 ok o
A . XY Talaromyces T il e & B B 5
Jei v i £ ST A 280 R AT 00 7 BB T I A
M fE ik DENV 7 | 5z 20 i 1) 52 1
3.3.2 MHlmEREWmEMAES MIERMAY AT
TG I L S R R T I M R RV PR AE . B LT
R B T I A 3 AR Toll L\ IMD A1 JAK-STAT 45
15530 %, 3 B 3 P 0 Y0NS AT R B R IR L B AL
IR Be ROS 77 A bl 7 52 10 . 38 40 i 3k
A TR R THT A DA A S 20 1 R Cln IR 2R W TR 2
) AT s A U 52 AU L T fe i % . A
IR FT B (Proteus sp. ) F125 ZF # AT B ( Paenibacillus
sp. ) E R T T R S B I T 48 5 22 b e A Jk ik
PR 25 SR AT sk S T G I 3 I 25 ) G
SR 4 Fe b i FIR Wi 1k &R e b i 3k R, AT
FEAR DENV e 1 1M 48 )5 9 #5008 B2 . 64, B R
5 BT BR 1 18 7 (Beawveria bassiana ) B] 15 3% MR
IO i RE AL T A 0 Toll i R JAK-STAT 3
A FE BT T R 5030, 41 ] DENV ket

J 3B AR W) AT A B BB B T M Y
e I WA T A R A AR . B, IR B AT
718 47 B 89 Chromobacterium sp. Panama(Csp_P)
1 Chromobacterium sp. Beijing(Csp_BJ) B ¥k 7] 43
W2 PR RE A Cop_P 43 W 14 S JIK TG 7T B fige
DENV E [, i idf 7K fifp & B 22 3k 1R 5% & 1 I 0 77
gEfyse et ML S T B AN IR A G
il AR . Csp_BI 20 A A W [ CCbAE-1 Fil
CbAE-2) 1] H# M ¥k DENV ,ZIKV.,JEV J SINV
F14 i I, o 0 7 R 0

o it 2 1 Jo A1 o i 3 3 AR R A e O AR
A BA YUR RGNy AR AT AR T
o 1 ORL B 25 B2 T A I R T AnE R T
SR IS RIS M AR I 3B 1Y) Enterobacter hormaechei
B17 T bk W] 43 W 8 2 B (—Fh s AR M) . BB S
ZIKV E HH 545 BUR A5 B 5, BB 75 -5 20
I PR 5 400 S5 T R A A A

¥ TG A T T A 2 L P O B B R (A g
5 JOEL 1 5t A0 R ) ) o BIR T 2 S . 1 U AR U
N P4 TR 2R B 3 £ 1 (Wolbachia ) 2 ) 75 T 6 15 3 40 iy
f1 JIE T 0 i S g SR IR R B T AT
TE S B 38 1 B 240 R 9 i 40 Y A e
“HORE e R B 12 8 0 S RO [ e R 2 i
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A i DL s S 7 A Al ARORE i o 400 i AE
e P o 75 £ /I 4 2 1) S B ST ) . 200 i 1A JOEL I s e =
2 BEL 5 R Vo B UL S0 490 1 B A% 476

i T B A T A R i A B R B (A
pH {ED DU 75 9 A8 B PE s AR BE 1. WAL
P I8 43 85 0 B AR 1A 4% ES 7 (Rosenbergiella sp.
YN46) HI 7315 4 4 W I I - o A 2 W e 1k O 4
WL BRI E pH (™ . BRYERREE AT il DENV 1
ZIKV E 8§ H R B R4 B8 H 5 40 5 52 1R 1)
5 A RE T B B A A . TR 38R SO ISR 1 S0 B
B FH Rosenbergiella sp. YN46 )5, i Py DENV
I ZIKV B R G ROR [EA  2 S A2 fm it . ik 2
SRR A PR A AR A T il pHE I
B » BEL W7 25 b A0 055 5 £ 4%
3.4 AAEABKRAKNEEY K NEETEBAAN
R R 5 ™ B AR K W v Mg e I e R 5
ARt B EMES Y M 3. X PR e el
BEANSCRE . A [ 75 A6 0 HL A A A 7 BB A2 A AL
FETE 22 5, SN BE A W) P L S0 A 3 5 A A £ 922
REK.
30401 AHmE Mk E Y % REAERR TS
Bz A N 58 D e A A I R R i L R
ik v B AL IR I (basal lamina, BL) #F A IMLMKE , X &
TR RO SCHE R g BL f IV AR5
AR 25 11 55 2H R X s 1 UKL AT o B T 0 B
3 4 R AL R B S i R B . IO B S
i 1) O B A R DU R o 1 e s B AR RS R L BL
FLAR (9~12 nm) /N T 055 B BURL (50 ~ 80 nm) 5 I Ifi
JE Y 5k S8 BL SN2 2L, IV A5 R A
FREAE 12~36 h N FEAR . BL @& P50, I8 5 5
PR MM E g B Y Wi s 48 h. BL fL4E
R 28 WL T 7K T 5 I I I B TIC s L 5 v
i BL. i R 0% BL A MR 7 20 (D B 5 19 0%
BRI 5T R b R A0 A T R A 1 o A
ok /S 286 A o e A 52 R O Tl SR 3K b
WA IR BL S8R (2) Bl 5 K
JE YL M2 (successive blood meal) B, [fil 2 B9 ML Ak
Pk I BL 7 AR S 2R L o AR 20 7 A
3.4.2 Nk EEERRNY K EREIEA MM
L o 8 Aok I bk E A0 PR R 2 e 2 A 2H 2 e A
eI ZCHEAR o R B T 7 MR VR A T O R T A R R
AREALRE A5 T . 9 B R A M IR T S 0 B
B A B R MRS A0 B R T S R 2 X
G5 ST AR o B SEC R BE AE R R iR Y

DENV Fl ZIK'V 4 s 35 55 3¢ D Il vk 22 4™ HIC 28 e Y
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B P 20 B, 2 70 0 1 Jak L It 20 M R % R,
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Fie » 5% 2 Bl TR i 28 0 90 . I P e g S e S
MR T T WAL RN R A .

4 E\%EEE@
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TATIE L - DL B I 3 SO0 ORI 2 350 2 WA 1
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