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多黏菌素耐药困境破局：抗菌药物增敏剂的前沿探索
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［摘　要］　多黏菌素是治疗多重耐药革兰阴性菌感染的“最后防线”，但犿犮狉１等多黏菌素耐药基因的出现与传播

严重削弱了其临床疗效。本文系统综述了多黏菌素的抗菌及耐药机制，并重点围绕天然来源化合物、合成小分子

及老药新用三大领域，全面梳理当前多黏菌素增敏剂的研究进展，并探讨了基因干预、新型靶点及纳米制剂在增敏

剂开发中的创新策略，以期为应对多黏菌素耐药提供系统的理论支持与研究思路。
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　　随着抗菌药物的广泛和不规范使用，多重耐药

菌不断涌现，严重限制了细菌感染的治疗选择。现

今抗菌药物耐药性已经成为全球十大公共卫生问题

之一［１］。１９９０—２０２１年间，全球每年因抗菌药物耐

药性导致的死亡人数已超过１００万，预计未来２５年

内将有超过３９００万人死于耐药菌感染
［２］。多黏菌

素被认为是治疗多重耐药革兰阴性菌（ｍｕｌｔｉｄｒｕｇ

ｒｅｓｉｓｔａｎｔＧｒａｍｎｅｇａｔｉｖｅｂａｃｔｅｒｉａ，ＭＤＲＧＮＢ）感染的

“最后防线”［３］，但其耐药基因犿犮狉１的发现动摇了

这道“最后防线”［４］。犿犮狉１可通过质粒介导在不同

菌株间广泛传播，犿犮狉１阳性大肠埃希菌、肺炎克雷

伯菌等已在全球各大洲出现［５６］。多黏菌素耐药性

已成为亟待解决的问题，研发抗菌药物增敏剂以对

抗多黏菌素耐药性刻不容缓，因此，本文对多黏菌素

增敏剂的研发进展进行综述。
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１　多黏菌素的抗菌及耐药机制

１．１　抗菌机制　多黏菌素主要包括多黏菌素Ｂ和

黏菌素（ｃｏｌｉｓｔｉｎ，ＣＯＬ），是在芽孢杆菌中发现的靶

向脂多糖（ｌｉｐｏｐｏｌｙｓａｃｃｈａｒｉｄｅ，ＬＰＳ）的一组阳离子

抗菌肽［７８］。其所带的正电荷能与ＬＰＳ中带负电荷

的类脂Ａ的磷酸基团发生静电相互作用，取代ＬＰＳ

分子间形成桥的二价阳离子，使ＬＰＳ脱出、外膜通

透性增强［８］。随后，多黏菌素通过“自我定向摄取”

穿过外膜，破坏细胞质膜上的ＬＰＳ
［９］。此外，多黏菌

素还能与带负电的磷脂囊泡结合，引起外膜与细胞

质膜小叶间的脂质交换，导致磷脂丢失，引起细胞裂

解、内容物泄露，并抑制细菌重要呼吸 酶 （如

ＮＡＤＨＱ还原酶），诱导活性氧（ｒｅａｃｔｉｖｅｏｘｙｇｅｎ

ｓｐｅｃｉｅｓ，ＲＯＳ）产生，进而引起细菌氧化性死亡
［１０］。

１．２　多黏菌素耐药现状　全球 ＧＮＢ对多黏菌素

的耐药率约为１０％
［１１］。临床感染中，肺炎克雷伯菌

和鲍曼不动杆菌是多黏菌素耐药性的主要承载菌

种。２０１８—２０２２年间，全国临床肺炎克雷伯菌分离

株对多黏菌素耐药率始终稳定在２．５％左右，鲍曼

不动杆菌对多黏菌素耐药率约为０．６％
［１２］。湖南省

鲍曼不动杆菌多黏菌素耐药率呈现持续下降趋势，

从２０１２年的７．９％ 降至２０２１年的２．４％
［１３］。非临

床环境中多黏菌素耐药基因的传播风险同样值得关

注：Ｊｉａｎｇ等
［１４］发现２０１８—２０２１年宠物中犿犮狉１阳

性大肠埃希菌携带率为０．８％～１．１％；Ｔａｎｇ等
［１５］

从１２０个零售肉类样品中发现１６株犿犮狉１阳性大

肠埃希菌分离菌；Ｓｈａｏ等
［１６］从５４份医院废水标本

中分离出犿犮狉１阳性大肠埃希菌，检出率为５０％。

１．３　耐药机制

１．３．１　ＬＰＳ修饰　最初，多黏菌素耐药性被认为

与ＬＰＳ合成相关的染色体基因突变有关，如Ｐｍ

ｒＡ／ＰｍｒＢ和ＰｈｏＰ／ＰｈｏＱ双组分系统及其负调节因

子犿犵狉Ｂ
［１７］，能诱导合成磷酸乙醇胺（ｐｈｏｓｐｈｏｅｔｈａ

ｎｏｌａｍｉｎｅ，ＰＥＡ）和／或４－氨基－４－脱氧Ｌ阿拉

伯糖（４ａｍｉｎｏ４ｄｅｏｘｙＬａｒａｂｉｎｏｓｅ，ＬＡｒａ４Ｎ），并

与ＬＰＳ整合以中和膜上负电荷，阻碍多黏菌素结

合。２０１５年，Ｌｉｕ等
［４］发现了首个由质粒介导的可

转移多黏菌素抗性基因犿犮狉１，随后犿犮狉１被世界

各地相继报道［１８］。犿犮狉１编码的蛋白 ＭＣＲ１是一

种ＰＥＡ转移酶，能将ＰＥＡ基团转移到类脂Ａ上，使

胺基和磷酸基之间形成大量氢键，减弱膜表面的电负

性并增强膜稳定性，导致多黏菌素难以与之结合［１９］。

此外，ＭＣＲ１引起的ＬＰＳ修饰可抑制膜流动性、细

菌外膜囊泡形成及炎症反应的相关细胞事件发生，

从而抑制ＧＮＢ对机体的免疫刺激作用，形成“免疫

逃避”［２０］。

ＭＣＲ１是一种膜结合的Ｚｎ２＋金属酶，由 Ｎ端

五次跨膜结构域和Ｃ端可溶催化结构域组成
［２１］。

其催化结构域上共有十个Ｚｎ２＋，位于酶活性位点的

Ｚｎ２＋（Ｚｎ２＋１ 、Ｚｎ
２＋
２ ）通过配位作用参与催化反应。

ＭＣＲ１通过Ｚｎ２＋１ 将 ＰＥＡ 从膜磷脂供体转移到

Ｔｈｒ２８５上形成共价磷酸中间体，再借助 Ｚｎ２＋１ 、

Ｚｎ２＋２ 将ＰＥＡ转移到类脂 Ａ上修饰ＬＰＳ结构
［２２］。

Ｚｎ２＋２ 的进入是第二个反应不可或缺的条件，因此，

阻止Ｚｎ２＋进入第二个锌位点是抑制 ＭＣＲ１耐药蛋

白的有效途径［２２］。

１．３．２　其他机制　除了修饰ＬＰＳ，细菌还能通过

外排泵主动排出药物来降低其对多黏菌素的敏感

性，如ＡｃｒＡＢＴｏｌＣ、ＡｄｅＡＢＣ及非耐药结节细胞分

化（ｒｅｓｉｓｔａｎｃｅｎｏｄｕｌａｔｉｏｎｃｅｌｌｄｉｖｉｓｉｏｎ，ＲＮＤ）外排

泵ＮｏｒＭ 等
［２３］。此外，犿犵狉Ｂ和狆犺狅Ｑ可促使细菌

形成生物膜以阻止多黏菌素的渗透，同时内部形成

酸性环境影响多黏菌素的电荷状态与稳定性［２４２５］。

２　多黏菌素增敏剂研究现状

抗菌药物增敏剂是应对 ＭＤＲ病原体的一种极

具前景的方法，通过增强抗菌药物作用或针对其耐

药机制来提高抗菌效果［２６］。其中，占据主流的是小

分子化合物（分子量＜１０００道尔顿），具有化学结

构简单、易穿透细胞膜和良好的药代动力学特性，通

过靶向结合耐药关键靶点干扰耐药防御系统，进而

恢复抗菌药物对耐药菌株的杀伤力。主要分为天然

产物、人工合成及药物再利用三种类型。

２．１　天然来源

２．１．１　植物来源的多黏菌素增敏剂　植物的次生

代谢产物具有多靶点、高生物活性的特点，是天然药

物筛选的重要来源。一些多酚类化合物具有强大的

酶抑制特性和与蛋白质结合倾向，能恢复犿犮狉１阳

性菌对多黏菌素的敏感性［２７３６］。黄芩苷可通过靶向

结合 ＭＣＲ１、抑制ＰｍｒＡ／ＰｍｒＢ和ＰｈｏＰ／ＰｈｏＱ双

组分系统表达、抑制外排泵等机制显著提高多黏菌

素的抗菌效果［３３］。一些萜类化合物也具有逆转多

黏菌素耐药性的潜力［３７４０］，例如，ＢＢＮ１４９可靶向抑

制ＬＡｒａ４Ｎ修饰类脂Ａ的整合膜蛋白ＡｒｎＴ
［３７］，使

多黏菌素的最低抑菌浓度（ｍｉｎｉｍｕｍｉｎｈｉｂｉｔｏｒｙ
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ｃｏｎｃｅｎｔｒａｔｉｏｎ，ＭＩＣ）下降至原先的１／８。见图１。

此外，生物碱类、苯丙素类及查尔酮类等化合物也展

现出消除多黏菌素耐药性的能力［４１４４］，见表１。
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　　注：ＰＭＦ表示质子驱动力。

图１　多黏菌素增敏剂协同作用机制

２．１．２　动物来源的多黏菌素增敏剂　动物提取物

用于抗菌治疗历史悠久。蜂蜜因其卓越的抗菌和抗

氧化特性，自古便用于治疗各种感染性疾病［４５４６］，其

中的白杨素可增强ＣＯＬ的膜损伤作用，恢复其杀菌

活性［４７］。一些来源于动物的抗菌肽衍生物也具有

逆转多黏菌素耐药性的潜力，包括从水牛中提取的

舌抗菌肽衍生的ＣＤＰＢ１１
［４８］、青蛙皮肤的线性抗菌

肽衍生的Ｅｓｃ（１－２１）
［４９］、非洲爪蟾皮肤提取物衍生

的 ＭＳＩ１
［２０］等。其中，ＣＤＰＢ１１、Ｅｓｃ（１－２１）通过

膜扰动机制破坏细菌膜，以增强多黏菌素的抗菌

活性［４８４９］，ＭＳＩ１可抑制犿犮狉１表达，并充当机体免

疫调节剂［２０］。见表１。

２．１．３　海洋来源的多黏菌素增敏剂　海洋独特的生

态环境使其微生物能产生具有各种活性的新型化合

物，是抗菌药物增敏剂的潜在来源［５０］。Ｚｈａｎｇ等
［５１］

发现海绵真菌木贼镰刀菌产生的伊快霉素能通过抑

制犿犮狉１转录恢复耐药菌对ＣＯＬ的敏感性，见图

１、表１。

２．２　人工合成的小分子增敏剂

２．２．１　ＭＣＲ１蛋白酶底物类似物　ＭＣＲ１蛋白存

在与ＰＥＡ和类脂Ａ结合的两个活性口袋，Ｗｅｉ等
［５２］

通过分子对接确定了ＰＥＡ类似物乙醇胺（ｅｔｈａｎｏｌａ

ｍｉｎｅ，ＥＴＡ）和类脂 Ａ类似物Ｄ葡萄糖与 ＭＣＲ１

蛋白的结合位点。ＥＴＡ和Ｄ葡萄糖均结合于磷酸

化的Ｔｈｒ２８５附近，但二者结合口袋的氨基酸残基

构成存在显著差异。ＥＴＡ位于Ｇｌｕ２４６、Ｔｈｒ２８５、

Ｌｙｓ３３３等氨基酸残基组成的口袋中，而Ｄ葡萄糖

被Ｔｈｒ２８３、Ｓｅｒ２８４、Ｔｙｒ２８７等氨基酸残基包裹。

联合生长抑制试验表明，４μｇ／ｍＬ多黏菌素Ｂ的杀

菌剂量随着ＥＴＡ浓度的增加而下降，但Ｄ葡萄糖

没有降低犿犮狉１阳性菌耐药性的作用。然而，一些

与Ｄ葡萄糖具有相似结合位点的天然化合物却表

现出了极高的消除多黏菌素耐药性的活性，如大叶

兰酚［２９］、漆黄素［３０］、白芦藜醇［３５］等。其原因可能为

天然化合物化学结构更加复杂，苯环、酚羟基等结构

的存在使其能与 ＭＣＲ１更加紧密地结合。

２．２．２　金属化合物增敏剂　除底物类似物外，一些

金属化合物可通过自身金属离子取代Ｚｎ２＋，干扰

ＭＣＲ１的催化活性。例如，Ａｇ
＋能置换 ＭＣＲ１的

辅因子Ｚｎ２＋，形成一个四核银中心，并产生空间位

阻效应，从而阻断 ＭＣＲ１与底物结合
［５３］。此外，

Ａｕ＋也能取代Ｚｎ２＋，与 Ｇｌｕ２４６、Ａｓｐ４６５、Ｈｉｓ４６６

和Ｔｈｒ２８５形成四面体配位结构，进而抑制 ＭＣＲ１

的催化活性［５４］。

２．２．３　其他合成小分子　除 ＭＣＲ１蛋白酶底物

类似物和金属化合物外，一些结构新颖的合成小分

子也展现出逆转多黏菌素耐药性的潜力。例如，

ｏｒｏｉｄｉｎ的色胺衍生化合物８能够通过增强细菌膜

通透性提升ＣＯＬ的抗菌活性
［５５］。此外，四氢苯并

吖啶类似物［５６］和二胺基胍衍生物［５７］也显示出增强

多黏菌素抗菌作用的能力，见表２。
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表１　天然产物来源的多黏菌素增敏剂

名称 化合物结构 作用机制 ＭＣＲ１结合位点 体内外抗菌活性 参考文献

植物来源的化合物

多酚类化合物

　 大叶兰酚

!"

!"

!

!

增强ＣＯＬ的膜损伤，抑制 犿犮狉１

表达，靶向抑制 ＭＣＲ１蛋白

Ｔｈｒ２８３、Ｓｅｒ２８４、Ａｓｎ４８２、

Ｔｙｒ２８７、Ｐｒｏ４８１

ＭＩＣ降低至原先的１／３２，ＦＩＣＩ＝０．０９；

小鼠生存率从２５％（多黏菌素单药）提

高至７５％（联合用药）

［２９］

　 漆黄素纳米乳 !"

"

"

"!

"!

抑制 ＭＣＲ１，抑制细菌 ＡＢＣ转运

系统，增强ＣＯＬ的膜损伤

Ｇｌｙ２８２、Ｐｒｏ４８、Ｔｈｒ２８３、

Ａｓｎ４８２、Ｔｙｒ２８７

ＦＩＣＩ＝０．０６～０．３２；小鼠和雏鸡生存

率分别从２０％和３０％（多黏菌素单

药）提高至６０％和７０％（联合用药）

［３０］

　 补骨脂二氢黄酮

!

!"

!

破坏细菌膜结构，增加膜通透性

并诱导产生 ＲＯＳ；抑制 ＭＣＲ１；

抑制细菌生物膜的形成和运动

Ａｌａ４３７、Ｐｈｅ４４１、Ａｒｇ３６５、

Ｐｈｅ４０７、Ｇｌｙ３９３

ＭＩＣ降低至原先的１／４～１／８，ＦＩＣＩ＝

０．１２５～０．２５；大蜡螟和小鼠生存率分

别从３０％和１６．６％（多黏菌素单药）

提高至７０％和８３．３％

［３１］

　 槲皮素
!"

"!

!"

!"

!"

!

!

抑制犿犮狉１和犿犵狉Ｂ表达，协同增

强ＣＯＬ的膜损伤

　　　　　－ ＭＩＣ降低至原先的１／４～１／３２，ＦＩＣＩ＝

０１４１～０．３７５

［３２］

　 黄芩苷和ＥＤＴＡ
!"

"!

"!

"! !

!

!

!

!

黄芩苷

!"

"!

抑 制 犿犮狉１、ＰｍｒＡ／ＰｍｒＢ 和

ＰｈｏＰ／ＰｈｏＱ双组分系统表达；抑

制多药外排泵；促进 ＴＣＡ 循环，

抑制氧化还原，增强细菌氧化损

伤。二者都可抑制 ＭＣＲ１

黄 芩 苷：Ｌｙｓ３０７、Ｌｙｓ３３３、

Ａｓｐ３３１、Ａｓｐ３３７、Ｇｌｙ３３４、

Ｔｙｒ３０８

ＥＤＴＡ：Ｌｙｓ３０７、Ａｓｐ３３７、

Ｔｙｒ３０８、Ｔｈｐ２１９

ＦＩＣＩ＝０．２５～０．５ ［３３］

　 光甘草定
!"

"!

"

!

!

抑制ＦａｂＩ，抑制脂肪酸合成；干扰

卷曲纤毛蛋白合成，抑制生物膜

形成，并清除已形成的生物膜

　　　　　－ ＦＩＣＩ＝０．３７５ ［３４］

　 卡亚宁芪酸
!"

"!!#

!#"

$

#"

$

#"

$

抑制 ＭＣＲ１ Ｇｌｕ２４６、Ｔｈｒ２８５、Ｌｙｓ３３３、

Ｈｉｓ３９５、Ｈｉｓ４７８、Ｓｅｒ３３０、

Ａｓｐ４６５、Ｈｉｓ４６６

ＭＩＣ降至 １μｇ／ｍＬ，小 鼠 生 存 率 从

２０％（多黏菌素单药）提高至８０％（联

合用药）

［３５］

　 白芦藜醇和黄芩苷

!"

"!

"!

"!

!"

!"

"!

!"

"!

! !

!

!

!

黄芩苷

白芦藜醇

提高膜通透性，增强ＣＯＬ的膜损

伤；破坏ＰＭＦ稳态；抑制ＴＣＡ循

环、氧化磷酸化；抑制外排泵表

达

白芦藜醇：Ｐｒｏ４１２、Ｖａｌ４１３、

Ａｓｎ４１７、Ｇｌｕ４１８、Ｇｌｕ４２３、

Ｓｅｒ４２６

黄芩 苷：Ａｓｎ４８２、Ｐｈｅ４８４、

Ｌｙｓ４８７、Ａｒｇ４９０

ＭＩＣ降低至原先的１／５１２，小鼠肝脏、

脾脏和肾脏的载菌量分别降低３．８６３、

８．３７５和７．８３２ｌｏｇ１０ＣＦＵ／ｇ

［３６］

萜类化合物

　ＢＢＮ１４９
!"

"

"

"

抑制 ＡｒｎＴ 　　　　　－ ＭＩＣ降低至原先的１／８ ［３７］

　 广藿香酮 !"

!

!

!

抑制 ＭＣＲ１、ＭＣＲ３，增强 ＣＯＬ

的膜损伤

Ａｓｐ３２７、Ａｓｐ３４６ ＦＩＣＩ＝０．１５～０．３９，小鼠存活率从

４３．３％ （多 黏 菌 素 单 药）提 高 至

８０％（联合用药）

［３８］

　 香芹酚

!"

抑制 ＭＣＲ１和细菌肽聚糖的生

物合成酶

Ｐｈｅ２１１、Ａｒｇ１６９、Ｖａｌ１７１、

Ａｌａ２４１、Ｌｙｓ２１０

ＭＩＣ降低至原先的１／１６～１／５１２，ＦＩＣＩ

＝０．１２～０．２５

［３９］

　 百里香酚纳米乳

!"

抑制生物膜的形成，促进膜损伤；

诱导产生 ＲＯＳ；抑制 ＭＣＲ１；抑

制膜蛋白表达

Ｔｙｒ３９９、Ｌｅｕ４１９、Ｐｒｏ３９７、

Ｌｅｕ４７７、Ｔｙｒ４７６、Ｌｅｕ４７０、

Ｈｉｓ４２４、Ｌｅｕ４２７、Ｔｙｒ４７６

ＭＩＣ降低至原先的１／２～１／６４，雏鸡

存活率从１０％（多黏菌素单药）提高至

６０％（联合用药）

［４０］

生物碱类化合物

　 小檗碱和ＥＤＴＡ

!

!"#

$

!"%

$

!

&

'

小檗 碱 抑 制 ＭＣＲ１ 和 ＡｃｒＡＢ

ＴｏｌＣ；抑制犿犮狉１和ｔｏｌＣ表达；联

合ＥＤＴＡ破坏膜电位，诱导膜去

极化，增强 ＣＯＬ的膜损伤；促进

ＴＣＡ循环

Ｌｙｓ４２１、Ｇｌｕ４１５、Ｃｙｓ４２２、

Ｓｅｒ４２６

ＭＩＣ降低至原先的１／８～１／２０４８，ＦＩ

ＣＩ＝０．１２７～０．３７５；相较于单一疗法，

联合用药使小鼠肝脾的细菌载量减少

约２ｌｏｇ１０ＣＦＵ／ｓ

［４１］

　 粉防己碱
! !

!

!

!

!

"

"

!

破坏ＰＭＦ，增强 ＣＯＬ的膜损伤；

抑制犿犮狉１表达；抑制 ＭＣＲ１；抑

制外排泵

Ｌｅｕ４１９、Ａｌａ４２０、Ｔｙｒ４７６ ＭＩＣ降低至原先的１／４～１／２５６，小鼠

大腿的细菌载量从５．６ｌｏｇ１０ ＣＦＵ／ｇ

（多黏菌素单药）降低至 ２．７６ｌｏｇ１０

ＣＦＵ／ｇ（联合用药）

［４２］
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续表１　（犜犪犫犾犲１，犆狅狀狋犻狀狌犲犱）

名称 化合物结构 作用机制 ＭＣＲ１结合位点 体内外抗菌活性 参考文献

苯丙素类化合物

　 去甲二氢愈创木酸
!"

!"

"!

"! 增强 ＣＯＬ 的膜损伤，诱导产生

ＲＯＳ；抑制 ＭＣＲ１
　　　　　－

ＭＩＣ降至１～２μｇ／ｍＬ，ＦＩＣＩ＝０．０９

～０．２５；小鼠存活率从６．６７％（多黏

菌素单药）提高至５０％（联合用药）

［４３］

查尔酮类化合物

　 潘杜拉亭 Ａ
!"

"!

#!

$

#!

$

#!

$

#!

$

"

"

清除生物膜；诱导氧化磷酸化，诱

导产生ＲＯＳ；引起细菌内铁稳态

紊乱

　　　　　－ ＭＩＣ降至原先的１／３２，ＦＩＣＩ＝０．０２±

０．０１

［４４］

动物来源的化合物

　 白杨素
!"

"! !

!

破坏膜电位，提高膜通透性，增强

ＣＯＬ的膜损伤；抑制生物膜形成
　　　　　－ ＭＩＣ降至０．１２５μｇ／ｍＬ，ＦＩＣＩ＝０．０４７～

０．１８８

［４７］

　 抗菌肽ＣＤＰＢ１１ － 破坏细菌膜，引起膜去极化并产

生孔隙，导致膜不稳定和膜完整

性丧失

　　　　　－ ＭＩＣ降至０．０００５μｇ／ｍＬ ［４８］

　 抗菌肽Ｅｓｃ

　 （１－２１）

－ 具有膜扰动活性，增强ＣＯＬ的膜

损伤

　　　　　－ ＭＩＣ降至１～４μｇ／ｍＬ，ＦＩＣＩ＝０．２５～

０．３７

［４９］

　 肽 ＭＳＩ１ － 抑制犿犮狉１表达；抑制犿犮狉１阳性

大肠埃希菌的免疫逃避与致病作

用：促进 ＯＭＶ 形成，减少 ＯＭＶ

上的毒力蛋白

　　　　　－ ＭＳＩ１ＣＯＬ联 合 处 理 的 小 鼠 约 有

３０％存活

［２０］

海洋生物来源的化合物

　 伊快霉素
!"

"!

"

"

#

抑制犿犮狉１转录，增强 ＣＯＬ的膜

损伤，诱导产生ＲＯＳ

　　　　　－ ＦＩＣＩ＜０．５，４μｇ／ｍＬ 伊快霉素联合

１μｇ／ｍＬＣＯＬ对供试菌的抑制率达

１００％

［５１］

　　注：－表示文献无相关描述；ＭＩＣ表示最低抑菌浓度；ＦＩＣＩ表示联合抑菌指数；ＡＢＣ转运系统表示ＡＴＰ结合盒转运系统；ＰＭＦ表示质子

驱动力；ＴＣＡ表示三羧酸循环；ＦａｂＩ表示烯酰基载体蛋白还原酶；ＡｃｒＡＢＴｏｌＣ表示一种ＲＮＤ外排泵；ＯＭＶ表示外囊泡。

表２　人工合成的小分子多黏菌素增敏剂

名称 化合物结构 作用机制 体内外协同抗菌活性 参考文献

乙醇胺
!"

#!

$

抑制 ＭＣＲ１ 在抗菌测试中，４μｇ／ｍＬ多黏菌素 Ｂ

的杀菌剂量呈乙醇胺浓度依赖性下降

［５２］

银纳米颗粒 － 抑制 ＭＣＲ１ ＭＩＣ降至０．５μｇ／ｍＬ，ＦＩＣＩ＝０．３７５；

联合用药使小鼠肝脾的细菌载量降低

至原先的１／２０

［５３］

金硫葡萄糖、金纳米颗粒 － 抑制 ＭＣＲ１ 金硫葡萄糖使 ＭＩＣ降低至原先的１／

６４；４０ｎｍ金纳米颗粒与ＣＯＬ的ＦＩＣＩ＝

０．１８～０．３８

［５４］

ｏｒｏｉｄｉｎ的色胺衍生物

化合物 ! 化合物 "

#$

%&

'

'

%&

%&

%&

#$

$#

$#

$

#

#

$

提高膜通透性，增强ＣＯＬ的膜损伤 ｏｒｏｉｄｉｎ色胺衍生化合物２使 ＭＩＣ降至

４μｇ／ｍＬ以下，衍生化合物８的活性是

化合物２的４倍

［５５］

四氢苯并［ａ或ｃ］吖啶类似

物（ＨＳＤ１６２４、ＨＳＤ１６２５）

!" !"

# $%

&

$"

&

$

'!%()'*&+" &!%()'*&,"

ＨＳＤ１６２４增强肺炎克雷伯菌的膜

通透性，ＨＳＤ１６２５诱导铜绿假单胞

菌产生ＲＯＳ

ＭＩＣ降至原先的１／８～１／１６ ［５６］

异丙氧苯胍
!"

!" !"

!

!

#

#

提高膜通透性，增强 ＣＯＬ的膜损

伤；抑制细菌能量代谢、脂肪酸代谢

ＭＩＣ降至原先的１／４～１／１３３，ＦＩＣＩ＝

０．０２３～０．２８２

［５７］

　　注：－表示文献无相关描述；ＭＩＣ表示最低抑菌浓度；ＦＩＣＩ表示联合抑菌指数。
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２．３　老药新用　老药新用是指将已上市或在临床

研究中被验证过安全性的药物重新用于治疗其他疾

病或新的适应证。一些美国食品药品管理局（Ｆｏｏｄ

ａｎｄＤｒｕｇＡｄｍｉｎｉｓｔｒａｔｉｏｎ，ＦＤＡ）获批药物具有成

为多黏菌素增敏剂的潜力。例如，用于改善睡眠和

抗氧化的褪黑素，可通过诱导三羧酸（ｔｒｉｃａｒｂｏｘｙｌｉｃ

ａｃｉｄ，ＴＣＡ）循环过度活跃、增强氧化三甲胺呼吸引

起氧化损伤等机制恢复ＣＯＬ的抗菌活性
［５８］，见图

１。另有研究
［５９］表明，褪黑素可通过破坏细菌质子

驱动力来抑制携带犿犮狉１基因的质粒的水平转移。

另一个例子是用于治疗慢性酒精中毒的双硫仑，通过

抑制 ＭＣＲ１、提高膜通透性等机制来增强耐药菌对

ＣＯＬ的敏感性
［６０］。此外，抗风湿药金诺芬等药物也

显示出降低多黏菌素耐药性的潜力［６１６８］。见表３。

表３　“老药”中的多黏菌素增敏剂

名称 化合物结构 作用机制 ＭＣＲ１结合位点 体内外抗菌活性 参考文献

褪黑素

!"

"

#

!

!

$

"

提高膜通透性、诱导膜电位的消散；促

进ＴＣＡ循环、氧化三甲胺呼吸，抑制

细菌抗氧化系统，引起氧化损伤；抑制

犿犮狉１和外排泵相关基因表达；破坏

ＰＭＦ，抑制犿犮狉１质粒水平转移

　　　 － ＭＩＣ降至原来的１／３２，ＦＩＣＩ＝０．０６３；大

蜡螟存活率从０（多黏菌素单药）提高至

７０％（联合用药）

［５８５９］

双硫仑
!

!

!

!

"

"

抑制犿犮狉１质粒共轭转移；提高膜通

透性，诱导膜电位消散；干扰中心碳代

谢和核苷酸代谢，抑制 ＭＣＲ１，抑制

犿犮狉１表达

Ｈｓｄ１９４、Ｈｓｄ１９９、

Ｈｓｄ２８２、Ｈｓｄ２７０、

Ａｓｎ１３３、Ｖａｌ９３、Ａｌａ

９０、Ｚｎ４０１、Ｚｎ４０２

ＭＩＣ降至原来的１／３２，ＦＩＣＩ＝０．１２５；大

蜡螟幼虫存活率从低于２５％（多黏菌素

单药）提高至７５％（联合用药），小鼠大

腿载菌量减少２ｌｏｇ１０ＣＦＵ

［６０］

金诺芬
!

"

#

$

$

$

$

$

$

$

$

$

%

!

&

#

#!

&

#!

&

#!

&

#!

&

'(

)

#!

&

抑制 ＭＣＲ１ Ａｕ
＋ 取 代 Ｚｎ

２＋，与

Ｇｌｕ２４６、Ａｓｐ４６５、Ｈｉｓ

４６６、Ｔｈｒ２８５配位

ＭＩＣ降 至 原 来 的 １／８～１／１６，ＦＩＣＩ＝

０．１２５～０．２８１；小 鼠 存 活 率 提 高 至

１００％，且肝脾中的细菌载量降至原来的

１／１０

［６１］

盐酸西那卡塞

!

!

!

"#$

"

%

抑制生物膜形成并清除；提高膜通透

性，破坏膜结构；诱导产生ＲＯＳ

　　　 － ＦＩＣＩ＝０．０４７～０．０９４；大蜡螟幼虫和小

鼠的存活率分别从２０％和０（多黏菌素

单药）提高至７０％和６０％（联合用药）

［６２］

奥昔卡因

!

!

!

"

"

"#

诱导膜电位消散，增强 ＣＯＬ 的膜损

伤；诱导ＲＯＳ产生
　　　 － 单独使用０．５×ＭＩＣ的ＣＯＬ几乎没有杀

菌活性，而联合用药使细菌数量减少约

２ｌｏｇ１０ ＣＦＵ；小鼠存活率从０（多黏菌素

单药）提高至７５％（联合用药）

［６３］

氟芬那酸
!

"

"

"

!#

$

%

干扰生物膜的形成并清除；提高膜通

透性，增强ＣＯＬ的膜损伤
　　　 － ＭＩＣ降至原来的１／４～１／５１２，ＦＩＣＩ＝０．

０１７５～０．３７５；相较于单一疗法，联合用

药使小鼠大腿载菌量减少１．８３９ｌｏｇ１０

ＣＦＵ／ｇ

［６４］

氯硝柳胺纳米乳剂和

纳米乳凝

!"

"

"

#

"

$

%

$

!

&'

&'

破坏膜电位和 ΔｐＨ，引起ＰＭＦ消散；

抑制外排泵的活性；诱导产生ＲＯＳ

　　　 － ＭＩＣ降至０．０６２５～１．０μｇ／ｍＬ，ＦＩＣＩ＝

０．０１９５～０．１２９；小鼠存活率从３７．５％

（多黏菌素单药）提高至７５％以上（联合

用药）

［６５］

舒巴坦
!

"

#

"

$

"

"

%"

　　　　　　－ 　　　 － 小鼠生存率从０（多黏菌素单药）提高至

７５％～１００％（联合用药）

［６６］

平胃丸 － 增强ＣＯＬ的膜损伤；抑制 ＭＣＲ１ Ｔｙｒ２８７、 Ｍｅｔ４８０、

Ｐｒｏ４８１、 Ａｌａ４８５、

Ａｓｎ４８２、 Ａｒｇ４９０、

Ｃｙｓ２８１、 Ｔｈｒ２８３、

Ｓｅｒ２８４

ＦＩＣＩ＝０．０７±０．０５；雏鸡存活时间从３ｄ

（未经治疗）延长至５ｄ以上（联合用药）

［６７］

奥替溴铵

! !

!

!

"

#

"

$

%&

'

引起ＰＭＦ崩溃与膜去极化，提高膜通

透性，增强 ＣＯＬ的膜损伤；抑制细菌

外排泵

　　　 － ＭＩＣ降至原来的１／３２，ＦＩＣＩ＝０．２５；小鼠

存活率从０（多黏菌素单药）提高至８０％

（联合用药）

［６８］

　　注：－表示文献无相关描述，ＭＩＣ表示最低抑菌浓度，ＦＩＣＩ表示联合抑菌指数，ＰＭＦ表示质子驱动力，ＴＣＡ表示三羧酸循环。
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２．４　新型策略

２．４．１　基因干预策略　ＣＲＩＳＰＲＣａｓ９系统在对抗

抗菌药物耐药性方面前景广阔［６９］。该系统可通过

质粒等载体进入细菌，利用特定ｓｇＲＮＡ引导Ｃａｓ９

蛋白识别并切除耐药基因。Ｗａｎ等
［７０］构建的重组

质粒ｐＣａｓ９ｍ１和ｐＣａｓ９ｍ２，分别靶向 犿犮狉１的

２０、３０ｎｔ序列，成功敲除大肠埃希菌中的犿犮狉１，并

抑制耐药质粒转移。Ｈｅ等
［７１］设计的 ｐＩＳＡｐｌ１

ＣＲＩＳＰＲ／Ｃａｓ９质粒不仅能清除犿犮狉１阳性质粒并

抑制其水平转移，还对染色体携带犿犮狉１的菌株具

有杀菌作用。此外，反义核酸技术可阻断耐药基因

翻译，特异性降低细菌耐药性。如 Ｗａｎｇ等
［７２］设计

的靶向犿犮狉１的ＲＢＳ起始密码子的ＰＮＡ１，可将多

黏菌素的 ＭＩＣ降至１～２ｍｇ／Ｌ。

２．４．２　新型靶点的发现　除 ＭＣＲ蛋白外，某些细

菌蛋白酶也可能成为对抗多黏菌素耐药性的辅助靶

点。代谢通路方面，生物素合成抑制剂 ＭＡＣ１３７７２

可通过靶向抑制生物素依赖酶阻断脂肪酸合成，从

而逆转多黏菌素耐药性。此外，脂肪酸合成相关的

两种酶［β酮脂酰ＡＣＰ合成酶Ｉ（βｋｅｔｏａｃｙｌｓｙｎ

ｔｈａｓｅＩ，ＦａｂＢ）和烯酰基载体蛋白还原酶（ｅｎｏｙｌａｃ

ｙｌｃａｒｒｉｅｒｐｒｏｔｅｉｎｒｅｄｕｃｔａｓｅ，ＦａｂＩ）］的抑制剂也能

恢复多黏菌素的抗菌活性［７３］。细菌氧化还原调控

方面，Ｈｕ等
［７４］发现小分子Ｌｙｂ２４和多黏菌素Ｂ均

可结 合 ＮＡＤＨ偶 氮 还 原 酶 （ＡｚｏＲ），即 一 种

ＮＡＤＨ醌氧化还原酶，且Ｌｙｂ２４能显著增强多黏

菌素Ｂ的抗菌效力。推测Ｌｙｂ２４和多黏菌素Ｂ对

ＡｚｏＲ的双重抑制作用可协同干扰细菌的氧化还原

信号通路，诱导生成ＲＯＳ，最终引起细菌氧化性死

亡。膜稳态方面，２－氨基吡啶通过抑制膜蛋白

ＮｈａＡ，恢复犿犮狉阳性大肠埃希菌对多黏菌素的敏

感性［７５］。ＮｈａＡ是Ｎａ＋／Ｈ＋反向转运蛋白Ａ，负责

维持离子平衡、ｐＨ稳态及质子驱动力稳定。２－氨

基吡啶对其的抑制作用破坏了细菌的质子驱动力以

及细胞内ｐＨ平衡，削弱了膜稳定性和外排泵活性，

进而增强多黏菌素的膜损伤效应。见图１。

２．４．３　纳米制剂　纳米技术在多黏菌素增敏剂中

具有广阔的应用前景。Ｃｈｏ等
［７６］合成的镍混合氧

化锌与黑磷纳米复合材料，能通过表面电负性与被

修饰的带正电的细胞膜结合，增强膜表面的电负性，

从而恢复多黏菌素Ｂ的抗菌活性。同时，该材料还

能干扰细菌的氧化还原代谢，导致细菌氧化性死亡。

此外，纳米技术还有效解决了部分潜在增敏药物因

溶解性差而应用受限的问题，如百里香酚纳米乳［４０］、

漆黄素纳米乳［３０］、氯硝柳胺纳米乳剂［６５］等。部分纳

米制剂展现出优于母体药物的药效，如Ｚｈａｎｇ等
［５４］

发现金纳米颗粒增敏能力显著高于传统金基药物。

３　结论与展望

自禁止将多黏菌素作为生长促进剂以来，其临床

耐药率已从２０１６年的１４．３％ 降至２０１９年的６．３％，

但禽类来源犿犮狉１携带率维持在１８．４％～９０．９％
［７７７８］。

作为对抗 ＭＤＲＧＮＢ的“最后一道防线”，多黏菌素

的疗效正受到犿犮狉１等耐药基因的严峻挑战。近年

来，多黏菌素增敏剂的研究主要聚焦于天然产物、合

成小分子及老药新用，其中部分化合物在联用中呈

现出“抗氧化－促氧化”双相效应，且证实吲哚环是

增强ＣＯＬ抗菌活性的关键结构，为抗菌增敏剂的设

计提供了新思路［５５，５８］。

当前研究已突破传统化学增效模式，向多学科

交叉融合推进：（１）基因干预策略可靶向细菌耐药基

因实现“精准沉默”，从源头消除耐药性。（２）新型靶

点（脂肪酸合成途径、ＡｚｏＲ、ＮｈａＡ）的发现推动了多

靶点联合抑制，降低基因突变导致的治疗失败风险。

（３）纳米技术应用则通过提高药物生物利用度和递

送靶向性，显著提升增敏效果。

多黏菌素增敏剂的研发应紧密结合细菌耐药性

的演化趋势，随着如犿犮狉３等新基因的持续扩散
［５］，

未来研究需突破单一机制，构建覆盖耐药酶、外排

泵、生物膜及氧化还原代谢等多通路的协同增敏体

系。同时，应积极探索“体外杀伤＋体内免疫激活”的

符合策略，推进精准治疗、靶点创新与技术融合，为攻

克 ＭＤＲＧＮＢ感染提供更具前瞻性的解决方案。
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