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自噬在感染性疾病中作用的研究进展
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［摘　要］　自噬是一种高度保守的细胞代谢过程，通过形成自噬体包裹并降解细胞内受损的细胞器、错误折叠的

蛋白质及入侵病原体，是维持细胞稳态的重要机制。尽管自噬研究最初集中于癌症与神经退行性疾病领域，但近

年越来越多证据显示，其在多种感染性疾病（如结核病、真菌性角膜炎等）中发挥重要作用。本文将综述自噬的分

子机制及其在病原体感染中的动态相互作用，旨在为感染性疾病的预防与治疗提供新思路。
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　　自噬是一种重要的生理过程，通过溶酶体途径

降解并回收细胞内受损或冗余的组分，其核心功能

在于维持细胞内稳态。该过程在进化中高度保守，

在真核生物中广泛存在。研究［１］表明，自噬与癌症

及神经退行性疾病密切相关。自噬抑制剂能够增强

化学治疗、靶向治疗和免疫疗法的疗效，从而发挥抗

肿瘤作用。神经退行性疾病的共同特征包括病理性

蛋白异常聚集和细胞器功能障碍，而靶向自噬可清

除这些聚集物及受损细胞器，进而延缓或抑制疾病

进展［２］。近年研究发现，自噬在感染性疾病的发展

过程中也发挥重要作用。本文将对自噬在感染性疾

病中的作用进行综述。

１　自噬的概述

ＣｈｒｉｓｔｉａｎＤｅＤｕｖｅ于１９６３年首次提出“自噬”

概念，用以描述细胞质及细胞器在单膜或双膜囊泡

中降解的过程，并指出这些隔离囊泡或“自噬体”与

溶酶体相关［３］。随着对自噬机制研究的深入，自噬

被分为巨自噬（ｍａｃｒｏａｕｔｏｐｈａｇｙ）、微自噬（ｍｉｃｒｏａｕ

ｔｏｐｈａｇｙ）和分子伴侣介导的自噬（ｃｈａｐｅｒｏｎｅｍｅｄｉａ

ｔｅｄａｕｔｏｐｈａｇｙ，ＣＭＡ）
［４］，其中巨自噬即通常所指
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的“自噬”。自噬过程受一系列自噬相关基因（ａｕｔｏ

ｐｈａｇｙｒｅｌａｔｅｄｇｅｎｅｓ，ＡＴＧ）调控。营养缺乏、氧化

应激或病原体相关分子模式（ＰＡＭＰｓ）等刺激可激

活ＡＭＰ活化蛋白激酶（ＡＭＰａｃｔｉｖａｔｅｄｐｒｏｔｅｉｎｋｉ

ｎａｓｅ，ＡＭＰＫ），进而抑制哺乳动物雷帕霉素靶蛋白

（ｍａｍｍａｌｉａｎｔａｒｇｅｔｏｆｒａｐａｍｙｃｉｎ，ｍＴＯＲ），激活

ＵＮＣ５１样激酶（Ｕｎｃ５１ｌｉｋｅａｕｔｏｐｈａｇｙａｃｔｉｖａｔｉｎｇ

ｋｉｎａｓｅ１，ＵＬＫ１）复 合 物 （由 ＵＬＫ１、ＦＩＰ２００、

ＡＴＧ１３和 ＡＴＧ１０１组成）。ＵＬＫ１复合物磷酸化

下游的Ⅲ类磷脂酰肌醇３－激酶（ＰＩ３ＫⅢ）复合物

（含 Ｂｅｃｌｉｎ１、ＶＰＳ３４），促进吞噬泡形成。随后，

ＡＴＧ１２ＡＴＧ５ＡＴＧ１６Ｌ１复合物与微管相关蛋白１

轻链３（ＬＣ３）系统协同介导吞噬泡延伸，吞噬泡不断

延伸弯曲，将需降解的细胞成分包裹形成双层膜自

噬体。成熟的自噬体与溶酶体融合形成自噬溶酶

体，其内容物被水解酶降解，释放出氨基酸、脂肪酸

等小分子物质供细胞再利用［５］（见图１）。

自噬在感染性疾病中具有多维度作用：（１）自噬

通过异源自噬（ｘｅｎｏｐｈａｇｙ）和ＬＣ３相关吞噬作用，

将外来病原微生物摄入自噬体，并募集ＬＣ３至自噬

体膜，促进其与溶酶体融合以降解病原微生物；（２）

自噬可通过清除内源性炎症小体激活物（如线粒体

ＤＮＡ、活性氧）及调控炎症信号通路（如ＲＬＲ、ＮＦ

κＢ等），控制炎症反应；（３）自噬能将胞质抗原（如

病毒蛋白）转运至 ＭＨＣⅡ分子，从而增强ＣＤ４
＋Ｔ

细胞的应答；（４）自噬相关蛋白可参与调节白细胞

介素（ＩＬ）６、ＩＬ８、ＩＬ１β及免疫球蛋白等多种免疫

介质的分泌［６］。

与之相应，病原体也进化出多种机制以逃避自

噬：（１）抑制自噬体的形成；（２）阻断自噬体与溶酶

体融合；（３）利用自噬获取自身所需营养；（４）通过

自噬逃避免疫系统的识别。
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　　注：病原体感染或其他因素刺激可使机体激活ＡＭＰＫ并抑制ｍＴＯＲ。在ＵＬＫ１复合物和ＰＩ３ＫⅢ复合物的作用下，细胞

会形成吞噬泡。该吞噬泡在一系列由ＡＴＧ基因编码的蛋白复合物作用下，将需降解的成分包裹形成自噬体，并与溶酶体融

合为自噬溶酶体以降解其内容物。病原体可通过影响上述多个过程以逃避或利用自噬。

图１　自噬示意图

２　自噬在细菌感染性疾病中的作用

细菌感染是常见的临床疾病，可累及多种器官

与组织。自噬作为先天性免疫和适应性免疫的关键

环节，在抵抗细菌感染中具有重要作用。同时，细菌

也能通过破坏或利用自噬相关的毒力蛋白及分子来

逃避自噬作用。
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２．１　自噬在结核分枝杆菌感染中的作用　结核病

（ＴＢ）是由结核分枝杆菌（犕狔犮狅犫犪犮狋犲狉犻狌犿狋狌犫犲狉犮狌犾狅

狊犻狊，ＭＴＢ）引起的一种致命性传染病，自噬在 ＭＴＢ

感染过程中发挥着复杂且关键的作用。一方面，自

噬可通过清除入侵机体的 ＭＴＢ、参与抗原加工与提

呈以激活适应性免疫、调节炎症反应等多种方式发

挥抗 ＭＴＢ感染的作用；另一方面，ＭＴＢ能够通过

干扰自噬过程或诱导特定自噬途径来促进自身的存

活。深入探究自噬在 ＭＴＢ感染中的作用机制，对

开发新型诊断方法和治疗策略具有重要意义。

自噬在抗 ＭＴＢ感染中具有重要作用。Ｋｉｎｓｅｌ

ｌａ等
［７］利用Ｃｒｅ重组酶介导的ｌｏｘＰ序列重组（Ｃｒｅ

Ｌｏｘ）系统，构建了自噬基因 Ａｔｇ５条件性敲除小鼠

模型。研究发现，在ＣＤ１１ｃ＋肺巨噬细胞和树突状

细胞中，ＡＴＧ５通过自噬依赖方式调控促炎细胞因

子及趋化因子的产生，进而控制 ＭＴＢ感染早期中性

粒细胞的募集，从而减轻病理损伤。Ｇｏｌｏｖｋｉｎｅ等
［８］

研究进一步表明，将Ｃｒｅ基因剂量加倍以更强烈地

消耗ＡＴＧ１６Ｌ１或ＡＴＧ７，会导致ＭＴＢ在小鼠体内

生长增强及宿主易感性增加。通过活体成像试验结

合ＰＩ和ＣｅｌｌＥｖｅｎｔＣａｓｐａｓｅ３／７试剂染色发现，自

噬缺陷细胞死亡主要表现为坏死，而自噬功能正常

的巨噬细胞则主要激活凋亡途径。自噬缺失使细胞

死亡方式从凋亡转变为坏死，从而促进炎症反应；且

感染细胞坏死会诱导周围未感染巨噬细胞吞噬，吞

噬后未感染细胞迅速死亡，形成细胞死亡连锁反应。

该研究结果为利用自噬途径进行结核病治疗和疫苗

设计提供了新的依据。另有研究［９］表明，ＭＴＢ感染

可上调肿瘤坏死因子样弱凋亡诱导因子（ｔｕｍｏｒ

ｎｅｃｒｏｓｉｓｆａｃｔｏｒｌｉｋｅ ｗｅａｋｉｎｄｕｃｅｒｏｆａｐｏｐｔｏｓｉｓ，

ＴＷＥＡＫ）及成纤维细胞生长因子诱导蛋白１４

（ｆｉｂｒｏｂｌａｓｔｇｒｏｗｔｈｆａｃｔｏｒｉｎｄｕｃｉｂｌｅ１４，Ｆｎ１４）的表

达，而ＴＷＥＡＫＦｎ１４轴能促进 ＭＴＢ吞噬体成熟

并抑制其生长。Ｆｕ等
［１０］研究发现，海洋真菌来源

的胶霉毒素（ｇｌｉｏｔｏｘｉｎ）可通过促进自噬抑制 ＭＴＢ

感染，且自噬抑制剂３ＭＡ可逆转胶霉毒素处理后

降低的 ＭＴＢ感染水平。此外，研究
［１１］发现 ＲＮＡ

结合蛋白ＺＮＦＸ１通过稳定Ｐｒｋａａ２ｍＲＮＡ，促进

ＡＭＰＫ介导的针对 ＭＴＢ的自噬，有助于抑制胞内

细菌存活，并预防肺和脾组织的炎症浸润。

ＭＴＢ可通过拮抗或利用自噬机制实现自身存

活。研究［１２］显示，ＭＴＢ通过“劫持”宿主选择性自

噬受体 ＮＣＯＡ４介导的铁蛋白自噬，借助 ｐ３８、

ＡＫＴ１信号通路及 ＴＲＩＭ２１依赖的蛋白酶体降解

级联反应，促进铁蛋白降解，释放更多可利用铁以支

持其生长。Ｇｅ等
［１３］研究表明，ＭＴＢ蛋白激酶 Ｇ

（ＰｋｎＧ）在感染时促进自噬诱导，但在自噬体／吞噬

体成熟阶段抑制自噬，导致自噬流受阻，进而增加病

原体在细胞内的存活。此外，牛分枝杆菌（犕．犫狅狏犻狊）

可通过诱导巨噬细胞发生线粒体自噬，竞争利用ｐ

ＴＢＫ１来抑制宿主的异源自噬，从而增强其在细胞

内的存活能力［１４］。环状核糖核酸（ｃｉｒｃＲＮＡｓ）在

ＭＴＢ的病理机制中发挥关键作用。Ｚｈａｎｇ等
［１５］研

究发现，ｈｓａ＿ｃｉｒｃ＿０００２３７１在活动性肺结核（ａｃｔｉｖｅ

ｔｕｂｅｒｃｕｌｏｓｉｓ，ＡＴＢ）患者外周血单核细胞（ｐｅｒｉｐｈｅｒ

ａｌｂｌｏｏｄｍｏｎｏｎｕｃｌｅａｒｃｅｌｌ，ＰＢＭＣ）及 ＭＴＢＨ３７Ｒｖ

或卡介苗（ＢＣＧ）感染的ＴＨＰ１细胞中显著上调，并

能促进ｈｓａｍｉＲ５０２－５ｐ的表达。而ｈｓａｍｉＲ５０２－

５ｐ通过抑制ＢＣＧ感染巨噬细胞中的自噬相关１６

样蛋白１（ａｕｔｏｐｈａｇｙｒｅｌａｔｅｄ１６ｌｉｋｅ１，ＡＴＧ１６Ｌ１），

抑制自噬过程，从而促进ＭＴＢ在巨噬细胞中的生长。

综上所述，自噬的作用具有双重性，这种双向作

用源于 ＭＴＢ与宿主间的动态适应，提示未来研究

应关注特异性靶向调控，而非单纯增强或抑制自噬。

２．２　自噬在金黄色葡萄球菌感染中的作用　金黄

色葡萄球菌是一种常见且危害较大的机会性致病

菌。Ｃａｉｒｅ等
［１６］研究显示，金黄色葡萄球菌 ＨＧ００１

菌株感染可促使Ｙｅｓ关联蛋白１（ＹＡＰ１）发生核易

位，增强ＴＥＡＤ的转录活性，并激活自噬相关基因

的表达。若敲除ＹＡＰ１或阻断其与ＴＥＡＤ的结合，

会导致金黄色葡萄球菌在细胞内快速复制。此外，

ＹＡＰ１的转录活性支持溶酶体功能，而ＹＡＰ１突变

细胞的溶酶体酸化能力下降，无法有效应对逃逸的

细菌，这表明自噬在细胞抵抗金黄色葡萄球菌感染

中发挥着重要作用。补体３（ｃｏｍｐｌｅｍｅｎｔ３，Ｃ３）通

常在细菌内化前自发沉积于入侵细菌表面。研究发

现，Ｃ３的沉积可增强ＬＣ３与细菌的共定位，促进胞

浆型ＬＣ３（ＬＣ３Ⅰ）向膜型ＬＣ３（ＬＣ３Ⅱ）的转化，从

而加速自噬通量。Ｃ３及其裂解产物还与ＡＴＧ１６Ｌ１

相互作用并共定位，通过促进自噬来限制金黄色葡

萄球菌的增殖，进而保护宿主细胞［１７］。

另有观点指出，自噬在金黄色葡萄球菌感染中

可能发挥耐受而非直接抵抗作用。Ｍａｕｒｅｒ等
［１８］研

究显示，自噬基因Ａｔｇ１６Ｌ１缺失会提高金黄色葡萄

球菌感染的致死率，且这一现象与细菌载量无关，主

要影响机体对感染的耐受能力。这种耐受作用与α

毒素密切相关，自噬通过保护易受α毒素损伤的细

胞（尤其是内皮细胞），介导机体对金黄色葡萄球菌
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感染的耐受。此外，Ｃｈｅｎ等
［１９］研究证实，金黄色葡

萄球菌能通过ｃｉｒｃＳｙｋ／ｍｉＲ５１０６／Ｓｉｋ３信号轴调控

ｃｉｒｃＳｙｋ，从而阻断自噬并促进骨破坏。这些发现表

明，自噬在金黄色葡萄球菌感染中的作用机制仍有

待进一步深入研究。

２．３　自噬在其他细菌感染性疾病中的作用　除

ＭＴＢ和金黄色葡萄球菌外，自噬在其他细菌感染性

疾病中的作用也日益受到研究者的关注。结直肠癌

（ＣＲＣ）是全球第二大常见癌症，肠道微生物群组成

的改变与其发展密切相关。研究［２０］表明，小鼠感染

具核梭杆菌后，其代谢产物硫化氢可通过改变小鼠

肠道微生物组成并诱导自噬相关基因表达，促进

ＣＲＣ的进展。Ｒａｂａｐｔｉｎ５是早期内体成熟的主要调

控因 子，Ｍｉｌｌａｒｔｅ 等
［２１］研 究 发 现，它 能 通 过 与

ＦＩＰ２００和ＡＴＧ１６Ｌ１的相互作用，促进感染后早期

肠道 沙 门 菌 的 自 噬 清 除。另 有 研 究［２２］表 明，

ｐ３８ＭＡＰＫ／ＭＫ２信号通路通过影响自噬途径来抵

御沙门菌感染，在细菌感染过程中，ＴＡＮＫ结合激

酶１（ＴＡＮＫｂｉｎｄｉｎｇｋｉｎａｓｅ１，ＴＢＫ１）的激活是受

ｐ３８ＭＡＰＫ／ＭＫ２信号通路调控的关键因素。

病原菌亦可通过拮抗或利用自噬机制对人体造

成损伤。Ｗａｎｇ等
［２３］研究表明，伤寒沙门菌能够激

活巨噬细胞内的 ＮＦκＢ信号通路。该菌在感染早

期促进自噬，而在感染晚期则抑制自噬，这种动态调

控有助于其在巨噬细胞中存活。肺炎链球菌（犛．

狆狀犲狌犿狅狀犻犪犲）是重要的人类细菌病原体，常导致儿

童及老年人高发病率与病死率。Ｃｕｉ等
［２４］研究发

现，肺炎链球菌可释放能被肺泡上皮细胞内化的肺

炎链球菌胞外囊泡（ｐＥＶ），并在其中鉴定出一种真

核样丝氨酸－苏氨酸激酶蛋白ＳｔｋＰ。研究显示，内

化的 ＳｔｋＰ可诱导 ＢＥＣＮ１（ｂｅｃｌｉｎ１）在 Ｓｅｒ９３和

Ｓｅｒ９６位点发生磷酸化，从而启动自噬过程，并导致

闭塞素（ＯＣＬＮ）的自噬依赖性降解，最终引发肺泡

上皮屏障功能障碍。

３　自噬在病毒感染性疾病中的作用

自噬是宿主细胞用来防御病毒感染的强大工

具。自噬通过与模式识别受体信号合作诱导干扰素

产生来启动先天免疫反应，并可选择性地降解与病

毒颗粒相关的免疫成分，然后通过将降解产生的抗原

呈递给Ｔ淋巴细胞来协调适应性免疫。同时，病毒

也进化出了劫持和破坏自噬以使其受益的强大能力。

自噬是宿主细胞抵御病毒感染的重要防御机

制。它通过与模式识别受体信号协同作用诱导干扰

素产生，从而启动先天免疫反应；还能选择性降解与

病毒颗粒相关的免疫成分，并将降解产物作为抗原

呈递给Ｔ淋巴细胞，以协调适应性免疫应答。与此

同时，病毒也进化出强大的能力，能够“劫持”或破坏

自噬过程，以利于自身复制和生存。

３．１　自噬在严重急性呼吸综合征冠状病毒２

（ＳＡＲＳＣｏＶ２）感染中的作用　ＳＡＲＳＣｏＶ２引发

的２０１９冠状病毒病（ＣＯＶＩＤ１９）大流行持续对全

球健康与经济构成重大威胁。该病毒感染可通过抑

制自噬进程促进病毒复制，而诱导自噬则能限制

ＳＡＲＳＣｏＶ２的自我复制。ＳＡＲＳＣｏＶ２病毒感染

会影响 ＡＭＰＫ／ｍＴＯＲＣ１通路相关蛋白的磷酸化

水平，降低自噬增强蛋白的表达，减少自噬体－溶酶

体融合，导致自噬通量受阻，表现为自噬标记物Ｐ６２

和ＬＣ３ＢⅡ的积累。诱导自噬可限制ＳＡＲＳＣｏＶ２

的生长，通过外源性给予多胺（如精胺、亚精胺）、

ＡＫＴ１抑制剂 ＭＫ２２０６及ＢＥＣＮ１稳定剂等均可

诱导自噬，从而抑制ＳＡＲＳＣｏＶ２的传播
［２５］。

研究［２６］表明，ＳＡＲＳＣｏＶ２编码的开放阅读框

３ａ（ＯＲＦ３ａ）蛋白定位于内质网，通过 ＨＭＧＢ１

ＢＥＣＮ１途径诱导逆转录复合物转运调节因子 １

（ｒｅｔｒｏｍｅｒｔｒａｆｆｉｃｋｉｎｇｒｅｇｕｌａｔｏｒ１，ＲＥＴＲＥＧ１）介导

的网状自噬，进而引发内质网应激和炎症反应，促进

病毒复制，并增强细胞对内质网应激相关凋亡的敏

感性。同时，ＯＲＦ３ａ可阻碍ｃＧＡＳＳＴＩＮＧ 介导的

ｐ６２降解，抑制ＳＴＩＮＧ与 ＬＣ３的共定位及相互作

用，恢复 ＨＳＶ１和 ＥＶＡ７１复制，且受 ＴＰＥＮ 抑

制，是该轴的独特强效抑制剂［２７］。即ＳＡＲＳＣｏＶ２

ＯＲＦ３ａ能诱导ＲＥＴＲＥＧ１介导的网状自噬，并抑制

干扰素基因刺激蛋白 （ｓｔｉｍｕｌａｔｏｒｏｆｉｎｔｅｒｆｅｒｏｎ

ｇｅｎｅｓ，ＳＴＩＮＧ）介导的非经典自噬，从而促进病毒

复制并抑制机体抗病毒功能。此外，Ｈａｎ等
［２８］研究

证实，ＳＡＲＳＣｏＶ２ＯＲＦ１０也是ｃＧＡＳＳＴＩＮＧ 信

号通路的抑制剂，其可通过与ＳＴＩＮＧ相互作用，阻

碍ＳＴＩＮＧ的转运、磷酸化及其与ＴＢＫ１的结合，进

而抑制干扰素激活和自噬，帮助病毒逃避宿主先天

免疫。而ＳＡＲＳＣｏＶ２编码的 ＯＲＦ７ａ蛋白则通过

ＡＫＴＭＴＯＲＵＬＫ１通路启动自噬，但通过激活

ＣＡＳＰ３切割ＳＮＡＰ２９，阻碍自噬体－溶酶体融合，

抑制自噬进程，从而促进病毒复制［２９］。这些发现为

ＳＡＲＳＣｏＶ２致病机制研究和抗病毒药物研发提供

了新的靶点。

３．２　自噬在其他病毒感染性疾病中的作用　除
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ＳＡＲＳＣｏＶ２外，关于自噬在其他病毒感染性疾病

中作用的研究也日益增多。Ｔｈｉｎｗａ等
［３０］研究发

现，丝氨酸／苏氨酸激酶周期蛋白依赖性激酶样５

（ＣＤＫＬ５）可作为病毒自噬的调节剂，并证实其在宿

主对嗜神经性ＤＮＡ和ＲＮＡ病毒免疫中的重要性。

ＣＤＫＬ５在体内和体外均能防止病毒抗原的毒性积

累，并促进病毒感染期间的细胞存活。另有研究表

明，自噬受体 ＮＤＰ５２可作为乙型肝炎病毒（ＨＢＶ）

感染的传感器，通过与Ｒａｂ９蛋白相互作用，将病毒

包膜蛋白靶向溶酶体降解，从而抑制 ＨＢＶ 复制。

ＮＤＰ５２的缺失会抑制病毒包膜蛋白在溶酶体中的

降解，导致其在细胞内积累并提高病毒复制水平［３１］，

这为开发新的抗 ＨＢＶ疗法提供了潜在靶点。

登革热病毒（ＤＥＮＶ）在感染人树突状细胞

（ＤＣｓ）时，能利用早期自噬过程促进自身感染，并阻

断自噬晚期的降解阶段，导致自噬体积累。自噬体

丰度升高可能与病毒易感性增加相关；此外，ＤＣｓ还

可通过释放含病毒的ＬＣ３＋细胞外囊泡（ＥＶｓ）促进

ＤＥＮＶ传播
［３２］。干扰自噬体生成及ＥＶｓ分泌机制

有望成为抗ＤＥＮＶ感染的新策略。Ｌｉｕ等
［３３］研究

发现，在口蹄疫病毒（ＦＭＤＶ）感染过程中，病毒蛋白

ＶＰ１通过 ＡＫＴＭＴＯＲ依赖性自噬途径与 ＹＴＨ

ＤＦ２相互作用并使其降解，进而导致 ＧＴＰＢＰ４的

ｍＲＮＡ和蛋白水平上升。ＧＴＰＢＰ４的增加会抑制

ＩＲＦ３与ＩＦＮＢ／ＩＦＮβ启动子的结合，从而抑制ＦＭ

ＤＶ诱导的Ｉ型干扰素产生，促进病毒复制。这揭

示了ＦＭＤＶ通过自噬调控宿主先天免疫反应的新

机制，为深入理解其致病机制及防控感染提供了理

论依据，也为针对该途径的抗病毒策略提供了潜在

靶点。另有 Ｍａ等
［３４］研究证实，α疱疹病毒的被膜

蛋白ＵＬ２１通过 ＴＯＬＬＩＰ介导的选择性自噬途径

降解环状ＧＭＰＡＭＰ合酶，从而抑制Ｉ型干扰素信

号传导，削弱宿主先天免疫，促进病毒复制。

４　自噬在真菌感染性疾病中的作用

近年来，关于自噬与真菌感染性疾病关联的研

究虽不多见，但自噬在真菌感染性疾病中同样发挥

着双重调控作用：它既是宿主抵御侵袭性真菌的重

要防御屏障，也是病原体实现免疫逃逸的关键靶标。

真菌性角膜炎（ｆｕｎｇａｌｋｅｒａｔｉｔｉｓ，ＦＫ）是一种由

真菌病原体感染引发的严重眼部疾病，是发展中国

家致盲的重要原因，其主要致病真菌包括烟曲霉、白

念珠菌等。Ｌｉ等
［３５］研究显示，在烟曲霉所致ＦＫ的

进展过程中，自噬表达逐渐增强。抑制自噬会加重

烟曲霉角膜炎的严重程度，而自噬诱导剂则通过调

节多形核中性粒细胞（ｐｏｌｙｍｏｒｐｈｏｎｕｃｌｅａｒｎｅｕｔｒｏ

ｐｈｉｌｓ，ＰＭＮｓ）的募集、平衡促炎与抗炎细胞因子的

产生，以及可能影响中性粒细胞分化等方式，减轻角

膜炎严重程度，表明自噬在缓解烟曲霉角膜炎中可

能发挥重要作用。随后，Ｈａｎ等
［３６］研究发现，曲霉感

染可促进单核细胞趋化蛋白诱导蛋白１（ｍｏｎｏｃｙｔｅ

ｃｈｅｍｏｔａｃｔｉｃｐｒｏｔｅｉｎｉｎｄｕｃｅｄｐｒｏｔｅｉｎ１，ＭＣＰＩＰ１）在

人角膜上皮细胞（ＨＣＥＣｓ）及小鼠角膜细胞中的表

达。ＭＣＰＩＰ１通过抑制烟曲霉感染 ＨＣＥＣｓ时的

ｍＴＯＲ信号转导来增强自噬通量，从而减轻角膜

炎严重程度并抑制炎性细胞因子表达，外源性应

用 ＭＣＰＩＰ１蛋白有望用于ＦＫ的临床治疗。另有

研究［３７］指出，ＦＫ患者中 ｍｉＲ２２３－３ｐ呈过表达状

态，该ｍｉｃｒｏＲＮＡ可通过负调控 ＡＴＧ１６Ｌ１的表达

导致自噬通量受损，进而抑制自噬并促进炎症反应，

加重角膜炎。

白念珠菌（犆．犪犾犫犻犮犪狀狊）是一种机会性病原体，

可引发从浅表感染到危及生命的播散性感染。在易

感宿主体内，该菌能穿透肠道屏障发生易位，进而扩

散至深层器官。当白念珠菌入侵机体时，自噬相关

关键蛋白ＡＴＧ５与ＡＴＧ１６Ｌ１可通过溶酶体胞吐作

用介导质膜修复，并参与保护上皮细胞免受白念珠

菌诱导的细胞死亡［３８］。近期研究［３９］表明，糖皮质激

素会阻碍巨噬细胞对光滑念珠菌的吞噬作用，而雷

帕霉素则随时间推移展现出诱导巨噬细胞吞噬光滑

念珠菌的潜力。此外，Ｄｅｓａｉ等
［４０］在小鼠试验中观

察到，糖皮质激素可诱导并加重念珠菌血症，而雷帕

霉素有助于提高念珠菌血症小鼠的存活率。这些

结果表明自噬在光滑念珠菌感染过程中发挥着重

要作用。

５　展望

尽管自噬在感染性疾病中的作用研究已取得一

定进展，但其与病原体动态博弈的调控网络尚不明

确。同时，由于动物及细胞模型与临床样本间存在

差异，将自噬靶点药物转化为临床应用面临诸多挑

战。各类病原体已进化出多种逃逸或利用宿主自噬

以促进自身存活的机制，如何通过免疫信号重新激

活特定自噬过程以对抗感染仍是亟待探索的问题。

未来研究应深入探讨自噬在特定病原体感染中的作

用，以开发新的治疗策略。此外，自噬在慢性感染和
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免疫病理损伤中发挥的双重作用如何平衡，以及自

噬与凋亡、焦亡等死亡途径间的交叉调控机制，均为

未来研究的重要方向。关注靶向自噬的时空特异

性，如何实现清除病原体的同时避免被病原体利用

以逃避免疫识别，是关键问题。这些问题的解决将

为感染性疾病的防治提供新的思路。

利益冲突：所有作者均声明不存在利益冲突。
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