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Research progress in the role of autophagy in infectious diseases

FANG Tongrui, YUE Linzhi, MA Tao, WANG Guo fu, WU Lixian (Department of Micro-
biology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000

China)

[Abstract] Autophagy, a highly conserved cellular metabolic process, serves as a vital mechanism for maintaining

cellular homeostasis by forming autophagosomes to encapsulate and degrade damaged organelles, misfolded pro-

teins, and invaded pathogens within cells. Although autophagy research has primarily focused on cancer and neuro-

degenerative diseases, growing evidence in recent years highlights its significant role in various infectious diseases

(such as tuberculosis and fungal keratitis, etc).

This review summarizes the molecular mechanisms of autophagy

and its dynamic interplay with pathogen during infections, aiming to provide new insights for the prevention and

treatment of infectious diseases.
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M E IR, AW — RS B WA OC KL B (auto-
phagy-related genes, ATG) Ji#5. BIFEHh=Z A1k
LI B IS A O 23 7 R 2L (PAMPs ) 45 ) 37T 38
% AMP 351k 3 (4 B ( AMP-activated protein ki-
nase, AMPK) , 3 1 1) il 0 7L 2 4 o7 i 25 K AR
(mammalian target of rapamycin, mTOR), # /%
UNC-51 ¥ # ## (Unc-51-like autophagy activating
kinase 1, ULK1) & £ #) (i1 ULKI1, FIP200,
ATG13 F1 ATG101 2180 . ULK1 &4 ¥ #% 1R 1k
TR I S W AR BELEE 3 - B (PRBK-1D 269
(% Beclinl, VPS34) ., {¢ Bt 17 W 10 £ . B Jo
ATG12-ATG5-ATGI6L1 E &Y 5SS HEENR 1
25 3(LC3) RGL RIS 5 A Wit Y00 4 i, 75 W AN
S A gy K 5 A 1 200 L B 0 B2 R OB R B
WA . A B WA 5V A RS R N T
P DA 0 K i T W e R SRR R IR U7 TR
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- Direct elimination of microbes
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- Antigen presentation and lymphocyte homeostasis
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Pathogen Evasion and Exploitation Strategies
+Inhibition of autophagosome formation

- Blockade of autophagosome -lysosome fusion
- Hijacking autophagy for nutrient acquisition
- Evasion of immune recognition via autophagy
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21 AEEZHIBATRELFTHHEA 45K
(TB) J& B 45 4% 43 B AP (M ycobacterium tuberculo-
sis» MTB) 558 ) — Fh Boai Y15 44 . | W E MTB
B B R EE R R B IER ., —m, B
W o] 38 2V B AR LR MTB. 2 5415 i T. 54
S DLUONS 35 WP SR L RN ARAE B A 22 B 7 UK
P MTB &G i 4E 5 53 — J5 il MTB fE 4% Ji i
T A W R B R E A MR AR OR A IE B B A
o AT B WEAE MTB 23y v i /E FIAL L XF
TF A8 B2 W 7 12 FIGR 7 SR B 208 X

HWEEST MTB & gerh A 2 A/EH] . Kinsel-
la ZE R Cre EALEG A5 19 loxP J37 51 F 41 (Cre-
Lox) RGe A4 @ 1 A W K Avg5 Z A PR bR /b B
RO, BFGE KB A6 CD11c + fili Wi 41 Jf AR 2 4R
A ATGS i A AR 7 20 45 4t 48 40 if DY
T LB 7 7 A BT AR R MTDB g g JL 0
LA A 119 552 4 o DT 0l 2 995 B 452 475 . Golovkine %5
WFFEE— A 3B 8 Cre 3 DR300 5 0435 LA o 388 270 iy
HAE ATG16L1 8f ATG7, 258 MTB 1£/NEUAN
ARG SR KA T D SR N . 3 3 A R R e 2
4 PI i CellEvent Caspase-3/7 &5 4L 0, % ¥, B
Wik f5% I 200 Jf BT T 3 SR B SR B L T W B RE OE R
1) L W 240 L D) 3= 800 R T AR . 1 W R 2 A 40
FETT7 SO T A8 SR YR FE o DT AR 2 8 4 S vz 5 HL
TR 0 PR L 23175 5 S TR R SR B A Y A e A
W Jo A SR e 240 P G SE T, T B S8 T 3% B
B FE AR R B W AR AT A5 AR VR T R
B TR AREE . 5 A IF s B MTB ke
A b iR R BE R AR 85 O T % 5 L Ctumor
necrosis factor-like weak inducer of apoptosis,
TWEAK) M4 KW il EH 14
(fibroblast growth factor-inducible 14, Fn14) i) %
ik, TWEAK-Fni14 % G842 i MTDB & Wi {4 5 24
FEAH A K . Fu 855 BF 98 & B, W P R R TR
1) I 25 B % (gliotoxin) Al 3@ o {2 #F B W4 i MTB
G, HL A WA ) 3-MA Rl e i w R AL A S
FEAGH) MTB &Y K, seah, it & 3 RNA
zE A% H ZNFX1 i@ i1 f2 52 Prkaa2 mRNA, {& i3t
AMPK 4~ S (18 %F MTB (¥ B W, 45 B F 390 1 i N
A0 TR A7 T o I T5 7 M R0 G2 200 A IR T

MTB a8 i 45 50 s A1) F A W bl 52 B A B A
o MR BoR, MTB @ ok “Bh 15718 kB A
WE3Z & NCOA4 A 3 (9 8 8 1 B b, 5 B p38.
AKT1 {5 5 s Je TRIM21 AR ) 25 1 6 1 [ A

GRIBE BN, A 3 BR 1 R AR L BT 22 R] R Tk LS
FrHAE K. Ge MW R R, MTB A EE G
(PknG) 7E &y if fi 3 1 W 175 5 (HAE B WA/ 75
PSRBT B il B w30 W 52 B 2 1 e
J A TE 240 LN B A7 3G . A A 3 B B (ML bowis)
A3 3 75 B A MR A SRR B WL S R p-
TBK1 Ml 15 3 1Y S 95 3 Wit o DA T 3 5 I 78 4
B A7 6 BRIV . PR R OB A% R (circRNAs) 7
MTB {13555 AL & #2 S AE T . Zhang %510 iF
X R B hsa_cire_0002371 7£ 1 sh M ifi 45 %% Cactive
tuberculosis, ATB) {8 & 4 & M %6 4% 41 g (peripher-
al blood mononuclear cell, PBMC) &z MTB H37Rv
R A (BCG) @& e i) THP-1 40 g v i 2% 1, IF
AEPEHE hsa-miR-502 — 5p A 35, T hsa-miR-502 —
S5p i o M il BCG gk g% B Wi 40 Jfd v i 13 A OC 16
#£ 8 M 1(autophagy-related 16-like 1, ATG16L1),
0] A et B A #E MTB 78 5 w4 i b i A=
25 B i . B WA AR B AT U 1 3 OB £
MPET MTB 5 1ig 3 18] /9 3l 25 58 B, 5278 R R F5¢
IO G T AR S A i) TS TSI B iR R A
22 AHESKENARARETHER &E
0 B BR TR A — R L HL S K W L2 P B0
W . Caire 251 BF9Y R » 4 9% 085 A BR ) HGOO1
PR TRl Yes SKERE F 1 (YAPD RAER )
B, 1G5k TEAD B % 56 % 1E, 5 806 B W AH G 5L A
ik, bR YAPT sifisr LS TEAD 1454
23 P B0 0 A PR A TE AN B o P A R A
Y AP {5 06 Ve S H W B IR T BE L 1T YAPT 2872
20 0 ) TR 1R A B T T B I A B0 X 1k 3R Y
AT L X R WY W A0 R T 4 o 4 R R
ok EE EEAEM . #ME 3(complement 3, C3)i#
AR NALHT B K TURT AR AR R . BFFE R
L. C3 UL Al 385 LC3 5 40 B A0 3L 2 A, 42 00 i
A LC3(LC3- 1) [ A LC3(LC3- 1) M #e 1k . I
M B wom . C3 M HA Yk 5 ATG16L1
FHEAE T IF A6 A7« i 2 (2 E 1 W ok PR A 4 B 667
7] BR DA 1 B 0 T DR T AR
T3 A WL AR W T 4 (0 2 R T SR P
AT RE R HE 32 M AR HAEAPUE . Maurer 55
LR - AR Atg16L1 itk 23 B w4 0 (0 4 49
BRI MBEOL R HiX — R S w ok, £
ML R T Z A8 . XA ZEM Y o
R EUIMOC, A WOl S R 5 % o T R 40005 19 40
JEL T HE 2 A B A0 ML) A S DLAR NS 45 9 60 7 7 2R T
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JRYL T 2 . e Ah . Chen 285 BIFSEAIF 52 L 45 85 6,74
Z PR A BE 8 33 cireSyk/miR-5106/Sik3 g 5 il 8 3%
cireSyk, T BHLIBT FI Wit O 42 32 B IR . ik sk R R
HY I 4 €0 7 2 3K AT B e o VR LA A
it —HRAWF 5T .
23 AMAEAmARERERFTOED R
MTB Fl 4 # €2 3 25 BR B 20 o 11 05 e At 40 1 JEk e 1k
P E B H 252 BIF S T . B EME
(CRO) 22 BREE = R W8 I« W 38 30 A P 1 4 A
MR 7E 5 R SR DI AR G . B gE ) R T, /N R g
HAZBRAT W Ja S ™ 9 6 4k & AT 3 2 el 2 /D B
Jo 3B A W AL BT 5 5 WA O i [R 3k 0k R
CRC (i, Rabaptin5 & 510 YA f 24 1) 3 24
W 7, Millarte 2 R KM, EReE S 5
FIP200 il ATG16L1 {4 H.AE - 42 2 IR s )5 7 3
i Vb T OB W BR. A WF s 3k,
p38MAPK/MK2 {5 5l #% i 1 52 Wi F W3 45 ok 41K
VDT IR Gy o A Al P R e o R b, TANK 455
fifi 1(TANK-binding kinase 1, TBK1) [ i & %
p38MAPK/MK2 {55 il % 8 45 (1) G [H &K

N pINE RV E s R NN IR PO PN S
A . Wang %52 BF 55 Fe B, 15 € 10 1] 1 BE 5 3L
I ELWE A0 M P9 1 NE-«B {55 53 . 3% 08 78 B e 7
AR [ I T A G O A o s X R Bl A R
VA BT AL EWE A0 B b A0S . Bl R BE R A (S,
preumoniae) jz T ZE N S U B R A S 20L
AN R R SRR, Cul 2V R K
B il 4 8 K T W] R R B I 1 B A0 Py Ak Y il
REEERE MMM (pEV) I AE b g it —Fh &
R 22 AR — 7 AR StkP, 5K BR. N
fb 1y StkP 7] i & BECN1 (beclin 1) 7E Ser93 #l
Ser96 i 13 & HEBEIR AL AT S 3 B W B O 5 3K
M ZE 2R COCLND 1 B Wi A9 B Ve 5 it fie 24 5| O il o
B e B ) R R A
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W T T A0 P R B A A R e Y R T
H. Al 5802 55 5% TR
7R Bl e IR A B SR AT I 5 M A 5
T3 URLAH G G2 B0 » SR I 38 e K e e 7 A R T i
i gy T B A0 oA P R IO S . TR 9
WHEAR T S BN A e D32 45 19 5 K fiE

I i 2 A0 10 g R S G A B A L

il e SR Z R E S R S T
B NI Ji3 2l 96 R S 88 S 5 3 g 3 B 1 e i 5
9o 7 OB A G 19 9 38 B4 » I 5 I8 itk 7 0 A kg e i
Ay T I B A L DA R PR G N . S
) B 5 2 0B 1k H 5 K B RE T L RES B B sl IR
HoWg et . LR T B 8 2 AL
3.1 AR AEPEELEESFREZAS A REF 2
(SARS-CoV-2) s % 494 I SARS-CoV-2 5| &
19 2019 56 R 350 (COVID-19) K3 A7 7 22 % 4
BR A 55 28 U b 8 R o 1207 T ER e T g
il B e R A R B A L S S B W 0 AR BR
SARS-CoV-2 [ I E il . SARS-CoV-2 i & ik Y
235 AMPK/mTORC! 3 B A6 5¢ 8 (1 (1 85 1R 1k
IRV AR W3 i B 1 A 2R 0K L Db B MR — VA
PR 5 3B R 2 B R A AR IC Y Po2
ALC3B- 1T IR E . 755 AW A Rl SARS-CoV-2
A i 3 A TR 28 T 2 e CIOORS e RS D
AKT1 # #15 MK-2206 % BECN1 f& & 7 2 44 7]
VS AW AT H SARS-CoV-2 By ,
782 F W, SARS-Co V-2 4 fith 1) FF ikt 1) 32 fiE
3a (ORF3a) & M & i T W B M, i 5 HMGBI1-
BECN1 ik E G W ki M "+ 1
(retromer trafficking regulator 1, RETREGD) /&
B AR W 32 T 5 1 K PR JBE JET AR RE S AR
o7 7 S ] 5 1 SR 2 R X P B I I SRR O R T A
k. [, ORF3a o] [ A% cGAS-STING 4§11
p62 FEfRE . AHl STING 5 LC3 # 3 5E 7 K A H.AE
F . HSV-1 1 EV-A71 & #l, B2 TPEN
] o 2 2 Bl 7 e R 5 S T B SARS-CoV-2
ORF3a figi5 5 RETREG1 A5 11 AR B 0 41 3
T4 & & W 3 & [ (stimulator of interferon
genes, STING) AT (1 9E & M 7w, T 2 2F 9% 75
SR AL BE DI RE . BLAh, Han S50 B 5%
WESZ, SARS-CoV-2 ORF10 1 J& ¢GAS-STING &
5T I B R LT 5 S STING A5 HAE L BE
it STING Wy¥%iz WMk %5 TBK1 455 . i
T 190 441 96 25 380G R I L 5 B e B 0k 0k T R e R
B . 1M SARS-CoV-2 it ) ORF7a £ 15 Wi ik
AKT-MTOR-ULK1 38 ¥ Ji 2h [ W, {58 i 3400
CASP3 §) ¥ SNAP29, L% H WK — ¥ B A fl &
T R L AT A O B A . X R N
SARS-CoV-2 Zi L BIF 58 T BTG B 25 ) BF K £ 41t
TR AT
3.2 AMAEAtLmARERAERTOER K
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SARS-CoV-2 4, & T H Wi AE HAth 55 75 J8% e 7 952 s
R G WF 58 B H 25 8% £ . Thinwa 55 W 58 &
. 22 ZA IR/ I3 B4 R T TR 30 B O M B R S
(CDKLS5) AT s 3 11 W A ] 15 70 o 9 1k 58 HAE 78
F XTI R 2 DNA F RNA 5% 55 fe 2 b i S,
CDKLS5 7E 44 4 #4441 35 g By 1k 9 2 P05 19 75 1 A1
B IR 1 B e W R (A B A TS . A R R
W, B W32 7k NDP52 0] {2 £ B 4% 9% #% (HBV)
Y I 1 B il i 5 Rab9 8 A EAE 906 7
£ SRR P o A B A L DA T B0 R HBY &4
NDP52 1 6 5 23 1 il 55 75 £ B 2 1 76 ¥ i 1k v iy
e e 5 SSCHL 0 20 M P B B8 0 488 w3 o o A A KO
XTI P HBV 7 sk dR 4t 7 e i 5 .

B RO 8 (DENV) 78 )& g AR 28 1R 40 g
(DCs) I}, B A F 10 A wes oo A4 0 B B Ik e, O fHL
W7 W A R e B B A WAL R . A WA
F BT T RE 5 S B B AR OG5 KAk . DCs i
A TE AT BRSO Y LC3 + A A2 (EVs) i ifF
DENV G455 T4 AWk A i S EVs 43 Wbl il
AP DENV &G 1) 8 5 . Liu 4550 5F 5%
BRI AE 1 B T (FMDV) L i f b e 7
VP1 i3+ AKT-MTOR &k #i4 4 ik %5 YTH-
DF2 #f B - 2 R g, 28 1M 5 30 GTPBP4 (1
mRNA FI% [ 7KF FF+. GTPBP4 (4 4% i 23 3 i
IRF3 5 IFNB/IFN-8 J& 8 F B9 25 & - T #0 fi) FM-
DV S T8 TR A REREEH. X8
/8 T FMDV i ik 5 w8 42 16 3 26 K 5 55 SR 19
BILT o Ay RN B Ao L 0RG BIL ) B B 4 % e S 41L T 3
VEARHE AR X2 AR 1 B e B ORI AR AL T A
M. A Ma SEDYBEIEIE S . o 8 95 G B 1 B R
HH UL21 @i TOLLIP 4 & 1y 2 £ 1 B Wik 12
Bt it 210k GMP-AMP 4 g, DT B0 T 289 19 245
AR T W85 3 SR g AR A A
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PEAFRR OE T W TR TR PR G I A T
FEBRAZ I B 7R R G TR B R R R A
WP EAE A B BE O EARA R R M R A E
LRI A 5 B 2 DA S I A R B 3R ) G SREEE AR

LA A IE R (fungal keratitis, FK) 2 —fp
TR SRR SR e 5| i 7 T IR AR A L S K T b
FECE A L H 2 SO B A G L
TR Li S RSE R AR 0 2 T8 FK Y

HEJE R B W IR B WG e M B W 2y 0
A it A T A R L T S ) DU e o
2 p PR 40 g (polymorphonuclear neutro-
phils, PMNs) f554E -7 12 28 5 Bt 58 40 L Y 5~ 19
PR LR AT RS 0 PR A0 S b S O 2 B A
B8 1 T AR L 2 T W T AR O A T R P R]
e R EEEAEA . BEJG . Han 255 BF 58 & B il 25 5K
S B 0 {2 11 S 2 11 1 Cmomocyte
chemotactic protein-induced protein 1, MCPIP1)fE
NS E Bz 40 i C(HCECs) K/ BRAf I 40 i o 1 2%
ik MCPIPT ji i ) ) A b %5 &% 4t HCECs i 1Y
mTOR {5 5% 55 1 5 [ Wl &, DA 00 £ A
2" T I R 1 A0 B T R gk A IR
I MCPIPt A 2T FK WIsIKIGIT. A
5T 46 L FK B miR-223 — 3p 2 3 ko
% ,1% microRNA 1] 3 i 1 % ATG161L1 By ik
T2 B W E RS2 A T ] 8 AR HE SR AE SN
T f R .

HA&KE (C. albicans) & — L2 VA AR
A 5] e R IR 3 18 e A= A )RR EOME R . TE )
JEAE RN IR RE 2R i R B R AR o o R T
MERZHEE . SHEEREARIUAR , B T
FEEE A ATG5 15 ATG16L1 Al il i 15 Al 4 it /F
M RUEEE IS 505 E R0 2 B &R
WA AEIE T . ST F W] R R T
2R3 BHLA W A %o ' 98 2 B A Y AR W AE R T
WFY 2 2R ) i ) % e B L 75 5 A A ' T
TR MW Ty, e Ah . Desai %00 78 /N BL 50 o 0L
SEB ]l B TR T 5T O I R B T ILAE . 1 B
R A BT B B AR /D B AR TR R, X 8
SER LW B T SRR R A B b kR
(SR

5 RE

A E AR TR B P 1 AT L R —
S8 E i o AELHG 5 0 TR Bl 25 T 2 1) 9 42 6 2% 1 A B
B o VIS o T Sl 4 B 240 i A TR 5 s R AR AR [ A A
2557 K 1 Wi A 24 ) B A DA e PR VL TR I 7 22 Bk
1o A% R B Akt 2 Pkt sSOR A 32 A
DA BE B B A7 35 B AL T o i i 4 5 15 5 TR
TR E I P LG B0 e A7) 2 i) 1 R R Y [
RAATFE L IRAARD B W AE 7 R o e P e e mh 9 AR
F VLT KB BIGTT M o BeSh . B AR 18 R i e A
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