老年性痴呆患者隐匿性肺炎风险预测模型的构建和验证
作者:
作者单位:

1.安徽医科大学第一附属医院老年呼吸与危重症学科, 安徽 合肥 230022;2.安徽医科大学第三附属医院老年医学科, 安徽 合肥 230022;3.安徽医科大学附属巢湖医院全科医学科, 安徽 合肥 230022

作者简介:

通讯作者:

范晓云  E-mail: 13956988552@126.com

中图分类号:

+2]]>

基金项目:

安徽省教育厅高校自然科学研究重点项目(KJ2020A0189)


Construction and validation of risk prediction model for occult pneumonia in patients with senile dementia
Author:
Affiliation:

1.Department of Geriatric Respiratory and Critical Illness, The First Affiliated Hospital of Anhui Medical University, Hehui 230022, China;2.Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University, Hehui 230022, China;3.Department of General Medicine, Chaohu Hospital Affiliated to Anhui Medical University, Hehui 230022, China

Fund Project:

  • 摘要
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 文章评论
    摘要:

    目的 分析老年性痴呆患者隐匿性肺炎的危险因素并构建预测模型。 方法 回顾性分析2019年1月—2020年12月安徽医科大学第三附属医院收治的明确诊断为老年性痴呆合并肺部感染患者病历资料,从确诊患者中随机挑选部分患者作为建模组,并根据是否具备隐匿性分为隐匿性肺炎组、非隐匿性肺炎组,其余病例作为验证组。分别采用单因素和logistic回归多因素分析老年痴呆患者发生隐匿性肺炎的危险因素,应用R4.0.3软件构建nomogram图并对模型进行验证。 结果 共纳入216例患者。其中148例(隐匿性肺炎75例、非隐匿性肺炎73例)用于建模,68例(隐匿性肺炎37例、非隐匿性肺炎31例)用于验证。糖尿病(OR=2.565,95%CI:1.094~6.015)、重度痴呆(OR=3.079,95%CI:1.116~8.494)、痴呆病程≥10年(OR=5.782,95%CI:2.139~15.627)、年龄≥80岁(OR=2.737,95%CI:1.011~7.413)、长期卧床(OR=4.835,95%CI:1.716~13.625)为痴呆合并隐匿性肺炎的独立危险因素(均P < 0.05)。通过该5项危险因素构建预测模型并进行验证,验证结果显示:建模组曲线下面积(AUC)为0.841,验证组AUC为0.756,提示该模型诊断能力良好;Hosmer-Lemeshow检验显示模型拟合优度良好;decision曲线分析显示该模型有较高的获益性。 结论 年龄≥80岁、重度痴呆、痴呆病程≥10年、糖尿病、长期卧床是老年性痴呆患者发生隐匿性肺炎的独立危险因素,通过列线图模型个体化可预测老年性痴呆患者发生隐匿性肺炎的概率,从而尽早干预,改善预后。

    Abstract:

    Objective To analyze the risk factors and construct prediction model for occult pneumonia (OP) in patients with senile dementia. Methods Medical records of patients with confirmed diagnosis of senile dementia complicated with pulmonary infection and treated in the Third Affiliated Hospital of Anhui Medical University from Ja-nuary 2019 to December 2020 were retrospectively analyzed. Some patients were randomly selected from the confirmed patients as the modeling group, they were divided into OP group, non-OP group, and other cases were as the verification group. Univariate and logistic regression multivariate analysis were used to analyze the risk factors for OP in patients with senile dementia, nomogram was constructed by R4.0.3 software and the model was verified. Results A total of 216 patients were included, 148 of whom (75 cases of OP and 73 cases of non-OP) were used for modeling, and 68 cases (37 cases of OP and 31 cases of non-OP) were used for verification. Diabetes mellitus (OR=2.565, 95%CI: 1.094-6.015), severe dementia (OR=3.079, 95%CI: 1.116-8.494), dementia duration ≥ 10 years (OR=5.782, 95%CI: 2.139-15.627), age ≥ 80 years (OR=2.737, 95%CI: 1.011-7.413), and long-term bedridden (OR=4.835, 95%CI: 1.716-13.625) were independent risk factors for senile dementia complica-ted with OP (all P < 0.05). The prediction model was constructed and verified through the five risk factors, the verification results showed that the area under the curve (AUC) in modeling group was 0.841 and that in verification group was 0.756, suggesting that the diagnostic ability of the model was good; Hosmer-Lemeshow test showed that the model had goodness of fit, decision curve analysis showed that this model had high benefit. Conclusion Age ≥ 80 years, severe dementia; dementia duration ≥ 10 years; diabetes mellitus, and long-term bedridden are independent risk factors for OP in patients with senile dementia, the individualization of nomogram model can predict the probability of OP in patients with senile dementia, so as to intervene as soon as possible and improve the prognosis.

    参考文献
    相似文献
引用本文

王书,苏增锋,范晓云.老年性痴呆患者隐匿性肺炎风险预测模型的构建和验证[J]. 中国感染控制杂志,2021,(11):996-1002. DOI:10.12138/j. issn.1671-9638.20211323.
Shu WANG, Zeng-feng SU, Xiao-yun FAN. Construction and validation of risk prediction model for occult pneumonia in patients with senile dementia[J]. Chin J Infect Control, 2021,(11):996-1002. DOI:10.12138/j. issn.1671-9638.20211323.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-26
  • 出版日期: