全关节置换术后假体周围感染风险预测模型的系统评价
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R687.4 R181.3+2

基金项目:

国家卫生健康委医院管理研究所医疗人工智能临床应用研究项目(YLXX24AID001);首都医科大学附属北京积水潭医院管理创新项目(GL202401)


Risk prediction models for periprosthetic joint infection after total joint arthroplasty: a systematic evaluation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 文章评论
    摘要:

    目的 系统评价全关节置换手术(TJA)术后假体周围感染(PJI)风险预测模型的研究进展,分析当前研究的局限性并提出优化建议。方法 系统检索PubMed、Embase、Web of Science、Cochrane Library、中国生物医学文献数据库(SinoMed)、万方数据库、维普数据库和中国知网(CNKI)等中英文数据库,检索时限从各数据库建库至2024年8月31日。两名研究者独立进行文献筛选,采用CHARMS清单提取数据,并使用PROBAST工具评价纳入研究的偏倚风险。结果 本研究共纳入14项研究,涉及17个预测模型。最常见的预测因子包括糖尿病史、肥胖[身体质量指数(BMI)≥30 kg/m2]、高龄(≥65岁)、创伤性骨折史及手术时间延长(≥2 h)等。所有纳入研究均存在较高偏倚风险,主要源自研究对象选择偏倚(如单中心样本)及统计分析偏倚(如未校正混杂因素)。结论 当前已发表的TJA术后PJI风险预测模型多数展现出良好的预测效能,但研究设计存在显著局限性,特别是偏倚风险控制不足。未来研究需重点改进方法学设计,包括采用前瞻性多中心研究、标准化预测变量定义及充分校正混杂因素。

    Abstract:

    Objective To systematically evaluate the research progress of risk prediction models for periprosthetic joint infection (PJI) after total joint arthroplasty (TJA), analyze the limitations of current researches, and propose optimized suggestions. Methods Chinese and English databases such as PubMed, Embase, Web of Science, Cochrane Library, SinoMed, Wanfang Database, VIP Database, and CNKI were retrieved systematically. The retrieved period was from the establishment of each database to August 31, 2024. Two researchers independently screened literatures and extracted data according to the CHARMS checklist, and the risk of bias in the included studies was evaluated by the PROBAST tool. Results A total of 14 studies were included in this study, involving 17 prediction models. The most common predictors included history of diabetes mellitus, obesity (body mass index [BMI] ≥30 kg/m2), advanced age (≥65 years old), history of traumatic fracture, and prolonged operation time (≥2 hours). All of the included studies had high risks of bias, mainly study subject selection bias (such as single-center sample) and statistical analysis bias (such as unadjusted confounding factors). Conclusion Most of the currently published risk prediction models for PJA after TJA have good predictive performance, however, there are significant limitations in the research design, especially in the insufficient control of bias risk. Future research needs to focus on improving methodological design, including adoption of prospective multi-center studies, definition of standardized predictive variables, and sufficient adjustment of confounding factors.

    参考文献
    相似文献
引用本文

单娇,怀伟,包小源,等.全关节置换术后假体周围感染风险预测模型的系统评价[J]. 中国感染控制杂志,2025,24(8):1066-1074. DOI:10.12138/j. issn.1671-9638.20257254.
SHAN Jiao, HUAI Wei, BAO Xiaoyuan, et al. Risk prediction models for periprosthetic joint infection after total joint arthroplasty: a systematic evaluation[J]. Chin J Infect Control, 2025,24(8):1066-1074. DOI:10.12138/j. issn.1671-9638.20257254.

复制
分享
文章指标
  • 摘要阅读次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-19
  • 出版日期: 2025-08-28