基于机器学习的脓毒性休克患者乳酸清除率动态预测模型开发与验证
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R181.3+2

基金项目:

2024年度安徽省中医药传承创新科硏基金项目(2024CCCX128)


Development and validation of a machine learning-based dynamic prediction model for lactate clearance rate in patients with septic shock
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 文章评论
    摘要:

    目的 针对脓毒性休克患者乳酸代谢动态监测的临床需求,开发基于长短期记忆网络(LSTM)的时序预测模型,用于预测入院24 h乳酸清除率。方法 采用多阶段回顾性队列设计,纳入2018年1月—2024年9月某医院重症医学科收治的脓毒性休克患者。通过单因素分析和LASSO联合特征筛选,从多维临床数据中提取预测因子。建立端到端LSTM架构(双层64/32单元,dropout率=0.3),采用滑动窗口策略(6 h步长)进行动态预测,并与传统logistic模型进行校准度(Brier score)、区分度[时间依赖性受试者工作特征曲线下面积(AUC)]和临床实用性(决策曲线分析) 三维度对比。模型预测结果与实际乳酸清除率进行一致性分析,评估预测准确性。结果 共纳入112例脓毒性休克患者,其中男性65例,女性47例;平均年龄(67.35±7.28)岁。乳酸清除率≥10%的良好组65例,<10%的不良组47例; 训练集78例,验证集34例。时间依赖性AUC分析显示,LSTM模型在6、12、24 h 时间窗的预测性能分别为0.89(0.85~0.93)、0.91(0.88~0.95)、0.92(0.89~0.96),优于logistic回归模型(ΔAUC=0.085,P<0.01)。核心预测因子包括APACHE Ⅱ评分(OR=1.38)、入院时乳酸水平(OR=1.65)、血管活性药物剂量(OR=1.42)和6 h液体复苏量(OR=1.35)。模型预测值与实际24 h乳酸清除率的Pearson相关系数为0.83(P<0.001),平均绝对误差为8.2%。决策曲线分析证实,当阈值概率在15%~60%时,LSTM模型可提升27.3%的临床净收益。各亚组验证显示,模型在肺部感染亚组(n=16)中保持最优预测效能(AUC=0.87)。结论 基于LSTM的乳酸清除率动态预测模型通过整合入院早期指标预测24 h乳酸清除率,具有良好的预测性能和临床应用价值,可为脓毒性休克患者的个体化治疗决策提供重要参考。

    Abstract:

    Objective To meet the clinical need for dynamic monitoring on lactate metabolism in septic shock patients, a time-series prediction model based on a long short-term memory (LSTM) network was developed to predict 24-hour lactate clearance rate at admission. Methods A multi-stage retrospective cohort design was adopted to enroll septic shock patients admitted to the department of critical care medicine of a hospital from January 2018 to September 2024. By conducting univariate analysis and LASSO combined feature screening, predictive factors were extracted from multidimensional clinical data. An end-to-end LSTM framework (two-layer 64/32 units, dropout rate=0.3) was constructed. A sliding window strategy (six-hour step size) was adopted for dynamic prediction and compared with traditional logistic model in terms of three dimensions: calibration (Brier score), discrimination (area under the curve [AUC] of time-dependent receiver operating characteristic [ROC]), and clinical practicality (decision curve analysis). Consistency between model prediction result and actual lactate clearance rate was analyzed, and the accuracy of prediction was evaluated. Results A total of 112 septic shock patients were enrolled in the analysis, including 65 males and 47 females, with an average age of (67.35±7.28) years. 65 patients were assigned in the lactate good clearance rate group (lactate good clearance rate ≥10%) and 47 in the lactate poor clearance rate group (lactate good clearance rate <10%); 78 patients were in the training set and 34 in the validation set. Time-depen-dent AUC analysis revealed that the predictive performance of the LSTM model in the time windows of 6, 12, and 24 hours were 0.89 (0.85-0.93), 0.91 (0.88-0.95), and 0.92 (0.89-0.96), respectively, superior to the logistic regression model (ΔAUC=0.085, P<0.01). The core predictive factors included APACHE Ⅱ score (OR=1.38), lactate level at admission (OR=1.65), vasoactive drug dosage (OR=1.42), and 6-hour fluid resuscitation dosage (OR=1.35). The Pearson correlation coefficient between the predicted value of the model and the actual 24-hour lactate clearance rate was 0.83 (P<0.001), with an average absolute error of 8.2%. Decision curve analysis confirmed that when the threshold probability was 15%-60%, the LSTM model could increase clinical net benefits by 27.3%. The validation of each subgroup showed that the model maintained the optimal predictive performance (AUC=0.87) in the lung infection subgroup (n=16). Conclusion The LSTM-based dynamic prediction model for predicting 24-hour lactate clearance rate through integrating early admission indicators demonstrates excellent predictive performance and clinical application value, which can provide important reference for individualized treatment decisions in septic shock patients.

    参考文献
    相似文献
引用本文

宋昭光,吴平宇,温思聪,等.基于机器学习的脓毒性休克患者乳酸清除率动态预测模型开发与验证[J]. 中国感染控制杂志,2025,24(8):1097-1105. DOI:10.12138/j. issn.1671-9638.20252158.
SONG Zhaoguang, WU Pingyu, WEN Sicong, et al. Development and validation of a machine learning-based dynamic prediction model for lactate clearance rate in patients with septic shock[J]. Chin J Infect Control, 2025,24(8):1097-1105. DOI:10.12138/j. issn.1671-9638.20252158.

复制
分享
文章指标
  • 摘要阅读次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-19
  • 出版日期: 2025-08-28