基于动态列线图模型预测极低出生体重早产儿早发型败血症风险
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R181.3+2

基金项目:

2021年度安徽省自然科学基金项目(2108086MH262)


Predicting the risk of early-onset sepsis in extremely low birth weight premature infants based on dynamic nomogram model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 文章评论
    摘要:

    目的 探讨极低出生体重早产儿发生早发型败血症(EOS)的危险因素,并建立极低出生体重早产儿EOS的列线图模型。方法 选取2021年1月—2023年12月某医院收治的200例极低出生体重早产儿作为训练集,选取2024年1—12月该院收治的86例极低出生体重早产儿作为验证集,训练集根据极低出生体重早产儿EOS的发生情况将其分为EOS组和无EOS组。采用logistic回归筛选极低出生体重早产儿合并EOS的危险因素,采用R软件建立极低出生体重早产儿合并EOS的列线图模型。结果 母亲妊娠年龄>35岁、产前发热、胎膜早破、留置经外周静脉置入中心静脉导管、机械通气、羊水污染、胎龄≤32周及新生儿发热是极低出生体重早产儿发生EOS的独立危险因素(均P<0.05)。训练集的受试者工作特征(ROC)曲线下面积为0.797(95%CI:0.755~0.859),验证集的ROC曲线下面积为0.769(95%CI:0.661~0.877);校正曲线显示该模型具有良好的一致性,决策曲线显示该模型的临床应用价值较高。结论 极低出生体重早产儿EOS的动态列线图预测模型的准确性及临床实用性良好。

    Abstract:

    Objective To explore the risk factors for early-onset sepsis (EOS) in extremely low birth weight (ELBW) premature infants, and construct a nomogram model for EOS in ELBW premature infants. Methods A total of 200 ELBW premature infants who admitted to a hospital from January 2021 to December 2023 were selected as the training set, and 86 ELBW premature infants who admitted to the hospital from January to December 2024 were selected as the validation set. The ELBW premature infants in the training set were divided into an EOS group and a non-EOS group based on the occurrence of EOS. The risk factors for EOS in ELBW premature infants were screened out by logistic regression, and a nomogram model for EOS in ELBW premature infants was constructed using R-based software. Results Maternal gestational age >35 years, prenatal fever, premature rupture of membranes, peripherally inserted central venous catheter (PICC) insertion, mechanical ventilation, amniotic fluid contamination, gestational age ≤32 weeks, and neonatal fever were independent risk factors for EOS in ELBW premature infants (all P<0.05). The area under the receiver operating characteristic (ROC) curve for the training set and validation set were 0.797 (95%CI: 0.755-0.859) and 0.769 (95%CI: 0.661-0.877), respectively. The calibration curve showed that the model had good consistency, and the decision curve showed that the model had high clinical application value. Conclusion The dynamic nomogram model for predicting EOS in ELBW premature infants has good accuracy and clinical practicality.

    参考文献
    相似文献
引用本文

张亚丽,刘梅.基于动态列线图模型预测极低出生体重早产儿早发型败血症风险[J]. 中国感染控制杂志,2025,24(8):1106-1113. DOI:10.12138/j. issn.1671-9638.20257306.
ZHANG Yali, LIU Mei. Predicting the risk of early-onset sepsis in extremely low birth weight premature infants based on dynamic nomogram model[J]. Chin J Infect Control, 2025,24(8):1106-1113. DOI:10.12138/j. issn.1671-9638.20257306.

复制
分享
文章指标
  • 摘要阅读次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-19
  • 出版日期: 2025-08-28