新生儿早发型败血症风险预测模型的系统评价
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R181.3+2 R722.13+1

基金项目:

山东省护理学会科研课题(SDHLKTQ202201);山东省研究型医院协会科研基金项目(1330022005)


Risk prediction models for neonatal early-neonatal sepsis: a systematic review
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 文章评论
    摘要:

    目的 系统评价新生儿早发型败血症(EOS)风险预测模型,旨在为模型的构建、优化及临床选择合适的预测模型提供参考依据。方法 计算机检索PubMed、Web of Science、Embase、Cochrane Library、CNKI、Wanfang Data、CBM和VIP数据库,收集新生儿EOS风险预测模型的相关研究,检索时限为建库至2025年1月18日。由两名研究人员独立筛选文献、提取数据,并应用PROBAST工具对纳入文献的质量进行评估,意见不一致时与第三方协商解决。结果 共纳入14篇文献,包括19个风险预测模型。纳入模型的受试者工作特征曲线下面积(AUC)为0.71~0.999。预测因子数量为3~21个,常见的预测因子包括胎龄小、低出生体重、1分钟Apgar评分、新生儿体温异常、胎膜早破时间延长、羊水浑浊、母体B族链球菌感染、母体绒毛膜羊膜炎、新生儿降钙素原和C反应蛋白升高等。模型整体偏倚风险高,主要原因为分析领域的结局变量事件数不足、缺失数据处理不当、基于单因素分析筛选预测因子、缺乏模型性能评估以及模型过拟合。结论 新生儿EOS风险预测模型尚处于发展阶段,尽管现有模型整体预测性能较好,但整体质量有待改进。未来建模可遵循PROBAST和TRIPOD规范降低偏倚风险,探索多种建模方法的组合,并重点加强外部验证和本土化应用,以提升模型的临床可用性与推广价值。

    Abstract:

    Objective To systematically evaluate the risk prediction models for neonatal early-onset sepsis (EOS), aiming to provide reference for the construction and optimization of models, as well as for clinical selection of appropriate prediction models. Methods PubMed, Web of Science, Embase, Cochrane Library, China National Know-ledge Infrastructure (CNKI), Wanfang Data, China Biology Medicine disc (CBM), and VIP databases were retrieved, and studies relevant to neonatal EOS risk prediction models were collected. The retrieval period was from the inception of the database to January 18, 2025. Two researchers independently screened literatures, extracted data, and evaluated the quality of the included literatures using PROBAST tool. Any disagreements were resolved through consultation with a third reviewer. Results A total of 14 literatures were included in analysis, containing 19 risk prediction models. The area under receiver operating characteristic (ROC) curve (AUC) of the included model ranged 0.71-0.999. The number of prediction factors ranged 3-21. Common prediction factors included young gestational age, low birth weight, 1-minute Apgar score, abnormal neonatal temperature, prolonged premature rupture of membranes, amniotic fluid turbidity, maternal Group B streptococcal infection, maternal chorioamnionitis, as well as elevated levels of procalcitonin and C-reactive protein in neonates. The risk of model overall bias was high, mainly due to insufficient number of outcome variable events in the analysis field, improper processing of missing data, screening of prediction factors based on univariate analysis, lacking model performance evaluation, and overfitting of model. Conclusion The neonatal EOS risk prediction model is still at the development stage. Although the current prediction models have better overall predictive performance, the overall quality needs to be improved. Future modeling can follow the PROBAST and TRIPOD specifications to reduce bias risk, explore the combination of multiple modeling methods, and focus on strengthening external validation and localized application to enhance the clinical applicability and promotion value of the model.

    参考文献
    相似文献
引用本文

吴青青,李如月,闫英琪,等.新生儿早发型败血症风险预测模型的系统评价[J]. 中国感染控制杂志,2025,24(11):1584-1593. DOI:10.12138/j. issn.1671-9638.20252338.
WU Qingqing, LI Ruyue, YAN Yingqi, et al. Risk prediction models for neonatal early-neonatal sepsis: a systematic review[J]. Chin J Infect Control, 2025,24(11):1584-1593. DOI:10.12138/j. issn.1671-9638.20252338.

复制
分享
文章指标
  • 摘要阅读次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-29
  • 出版日期: